期刊文献+
共找到205篇文章
< 1 2 11 >
每页显示 20 50 100
基于互补集合经验模态分解-模糊熵-深度信念网络的短期风速预测 被引量:4
1
作者 赵辉 华海增 +1 位作者 岳有军 王红君 《科学技术与工程》 北大核心 2019年第29期137-143,共7页
针对原始风速序列具有非线性、非平稳性和不可控性的问题,提出基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)-模糊熵(fuzzy entropy,FE)-深度信念网络(deep belief network,DBN)的短期风速预... 针对原始风速序列具有非线性、非平稳性和不可控性的问题,提出基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)-模糊熵(fuzzy entropy,FE)-深度信念网络(deep belief network,DBN)的短期风速预测模型。首先,利用CEEMD方法将原始风速序列分解为一系列不同尺度的本征模态分量(IMF)以降低其非平稳性;其次,利用模糊熵方法将多个IMF分量进行重组以避免分量数目过多给预测精度造成的影响;最后,利用深度信念网络其强大的深度特征提取能力和非线性映射学习能力的优点,分别对新的分量进行预测和叠加获得最终预测值。实验表明,较BP神经网络模型和DBN模型,组合模型提高了预测精度,具有可行性和有效性。 展开更多
关键词 短期风速预测 互补经验模态分解 模糊熵 深度信念网络 组合模型
下载PDF
基于EMD的城市轨道交通混合储能容量配置 被引量:3
2
作者 刘仕兵 郭文璟 +1 位作者 刘威 宋陵灿 《计算机仿真》 北大核心 2022年第4期97-102,共6页
针对城市轨道交通能耗大的问题,提出了风力与光伏联合供电的能源方案。为了缓解风能与光能的不稳定性对牵引网造成的冲击,采用超级电容与蓄电池结合的混合储能系统平抑风光波动。利用经验模态分解算法将功率信号的各个本征模函数(IMF)... 针对城市轨道交通能耗大的问题,提出了风力与光伏联合供电的能源方案。为了缓解风能与光能的不稳定性对牵引网造成的冲击,采用超级电容与蓄电池结合的混合储能系统平抑风光波动。利用经验模态分解算法将功率信号的各个本征模函数(IMF)分离出来,再结合希尔伯特变换得到各IMF的瞬时频率,将频率变化较大的高频信号分配给响应速度快的超级电容,将具有较高能量的低频信号分配给储能容量大的蓄电池。仿真结果表明,两种算法结合可以有效地将信号的高频部分和低频部分区分开来。 展开更多
关键词 轨道交通牵引负荷 风光互补 混合储能系统 经验模态分解
下载PDF
基于数据分析和改进Chebyshev神经网络的风速时间序列预测 被引量:3
3
作者 张旭 张宏立 +1 位作者 范文慧 王聪 《电测与仪表》 北大核心 2020年第22期33-39,共7页
为提高风速时间序列预测精度,基于风速时间序列的随机性和波动性,提出互补集合经验模态分解(Complete Ensemble Empirical Mode Decomposition,CEEMD)和正交粒子群算法(Orthogonal Particle Swarm Optimization,OPSO)优化Chebyshev基函... 为提高风速时间序列预测精度,基于风速时间序列的随机性和波动性,提出互补集合经验模态分解(Complete Ensemble Empirical Mode Decomposition,CEEMD)和正交粒子群算法(Orthogonal Particle Swarm Optimization,OPSO)优化Chebyshev基函数神经网络的混合风速时间序列预测模型(CEEMD-OPSO-Chebyshev)。利用CEEMD将原始风速时间序列分解成有限个固有模态分量,避免了传统的分解信号重建中冗余噪声残留问题。同时引入排列熵分析各分量内在特性进行聚类,提出基于OPSO优化算法的Chebyshev神经网络风速预测模型,利用OPSO优化预测网络权值,进一步提高预测精度,通过对实际采样的风电场风速时间序列进行预测分析,结果可得所提出的混合预测模型与传统预测模型相比能得到更高的预测精度。 展开更多
关键词 风速时间序列 互补经验模态分解 正交粒子群算法 CHEBYSHEV神经网络
下载PDF
基于改进CEEMD和多域特征融合的1D-CNN降雹量级识别算法
4
作者 李鹏 杨山山 +3 位作者 徐文校 陈守静 于心远 徐永杰 《电子测量技术》 北大核心 2022年第17期134-143,共10页
为便于分析冰雹对社会生产造成的灾害影响,需要对降雹量级进行分类统计,对降雹量级进行定量分析,不仅可以为灾害评估提供依据,还可以对气象预报、虚报现象做出反馈。本文针对降雹声信号提出了一种改进的互补集合经验模态分解(CEEMD)重... 为便于分析冰雹对社会生产造成的灾害影响,需要对降雹量级进行分类统计,对降雹量级进行定量分析,不仅可以为灾害评估提供依据,还可以对气象预报、虚报现象做出反馈。本文针对降雹声信号提出了一种改进的互补集合经验模态分解(CEEMD)重构算法,重构后的信号最大程度地保持原有时域特征,也能对降雹声信号去噪处理。其次设计了一种多域特征融合1D-CNN模型,将重构后的原始数据、时域特征和频域特征分别作为1D-CNN的输入,在中间层进行特征拼接,最后输出分类器,结果显示本文设计的多域特征融合1D-CNN对降雹量级的识别率高达99.58%,相比于原始数据与传统1D-CNN模型识别率提高了8.75%。 展开更多
关键词 降雹量级 互补集合经验模态分解 特征提取 1D-CNN
下载PDF
基于CEEMD和排列熵的故障数据小波阈值降噪方法 被引量:56
5
作者 周涛涛 朱显明 +1 位作者 彭伟才 刘彦 《振动与冲击》 EI CSCD 北大核心 2015年第23期207-211,共5页
针对旋转机械故障数据的非平稳性及总体平均经验模态分解方法(CEEMD)舍弃高频分量降噪方法和小波阈值降噪方法存在的不足,提出了基于CEEMD和排列熵的小波阈值降噪方法。运用CEEMD将信号分解为一系列的固有模态函数(IMF)分量,利用排列熵... 针对旋转机械故障数据的非平稳性及总体平均经验模态分解方法(CEEMD)舍弃高频分量降噪方法和小波阈值降噪方法存在的不足,提出了基于CEEMD和排列熵的小波阈值降噪方法。运用CEEMD将信号分解为一系列的固有模态函数(IMF)分量,利用排列熵来确定含有噪声成分较多的IMF分量,采用小波阈值降噪方法对含有较多噪声成分的IMF分量进行降噪处理,保留这些分量中的有效信息。仿真分析和实例分析表明,基于CEEMD和排列熵的小波阈值降噪方法效果优于单纯的CEEMD降噪方法和小波阈值降噪方法。 展开更多
关键词 降噪 经验模态分解 互补集合经验模态分解 小波阈值方法 排列熵
下载PDF
基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测 被引量:50
6
作者 赵会茹 赵一航 郭森 《中国电力》 CSCD 北大核心 2020年第6期48-55,共8页
随着电力行业的不断发展,负荷预测的重要性也不断彰显,作为负荷预测的重要组成部分,短期负荷预测对于电力系统的调度运行、市场交易都有着重要的意义,精确的负荷预测有助于提高发电设备的利用率和经济调度的有效性。由于影响负荷数据的... 随着电力行业的不断发展,负荷预测的重要性也不断彰显,作为负荷预测的重要组成部分,短期负荷预测对于电力系统的调度运行、市场交易都有着重要的意义,精确的负荷预测有助于提高发电设备的利用率和经济调度的有效性。由于影响负荷数据的随机因素太多且具有较强非线性的特点,提出一种基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测方法。通过对某市负荷数据进行仿真,将仿真结果与其他传统预测方法结果相对比,最终证明长短期记忆神经网络模型的误差更低,具有较高的预测精度。同时将互补集合经验模态分解下的长短期记忆神经网络方法与其他分解方法下的长短期记忆神经网络模型预测结果进行对比,验证互补集合经验模态分解方法对提升预测精度的有效性。 展开更多
关键词 短期电力负荷预测 长短期记忆网络 互补集合经验模态分解 深度学习
下载PDF
基于振动信号样本熵和相关向量机的万能式断路器分合闸故障诊断 被引量:49
7
作者 孙曙光 于晗 +2 位作者 杜太行 王景芹 赵黎媛 《电工技术学报》 EI CSCD 北大核心 2017年第7期20-30,共11页
为实现对万能式断路器分合闸故障的非侵入式监测和诊断,以分合闸过程中所产生的包含丰富机械特性信息的振动作为信号来源,提出一种基于振动信号互补总体平均经验模态分解(CEEMD)-样本熵和相关向量机(RVM)相结合的万能式断路器故障诊断... 为实现对万能式断路器分合闸故障的非侵入式监测和诊断,以分合闸过程中所产生的包含丰富机械特性信息的振动作为信号来源,提出一种基于振动信号互补总体平均经验模态分解(CEEMD)-样本熵和相关向量机(RVM)相结合的万能式断路器故障诊断方法。该方法首先将振动信号通过改进的小波包阈值去噪算法处理;其次采用CEEMD提取若干个反映断路器状态信息的固有模态函数(IMF)分量,依据各IMF分量的能量分布特点,选择其中前7阶进行处理,计算其样本熵形成有效的特征样本;最后通过计算不同故障类型的样本间欧氏距离来定量评价类间样本平均距离,建立基于RVM的二叉树多分类器,诊断得出万能式断路器故障类型。基于所设计的分合闸典型故障模型进行实验。与其他方法的对比实验表明,所提方法可利用相对较少的故障数据样本实现对万能式断路器故障类型的识别并具有较高的识别率;同时实验表明,辅以同一故障类型的样本间欧氏距离,可实现对分合闸故障中三相不同期故障严重程度的初步评估。 展开更多
关键词 万能式断路器 分合闸故障诊断 振动信号 互补总体平均经验模态分解 样本熵相关向量机
下载PDF
基于CEEMD-SBO-LSSVR的超短期风电功率组合预测 被引量:31
8
作者 周小麟 童晓阳 《电网技术》 EI CSCD 北大核心 2021年第3期855-862,共8页
为提高风电功率预测的精度,提出了一种基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、缎蓝园丁鸟优化算法(satinbower birdoptimizationalgorithm,SBO)及最小二乘支持向量回归(least squares ... 为提高风电功率预测的精度,提出了一种基于互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)、缎蓝园丁鸟优化算法(satinbower birdoptimizationalgorithm,SBO)及最小二乘支持向量回归(least squares support vector regression,LSSVR)模型的超短期风电功率组合预测方法。针对风电序列的随机波动性,采用CEEMD对风电功率序列进行分解,将分解得到的不同特征尺度的各分量作为LSSVR模型的训练输入量。引入SBO算法对LSSVR的正则化参数与核函数宽度进行优化,建立各分量的预测模型,将各分量的预测输出值叠加得到最终的风电功率预测值。所提CEEMD-SBO-LSSVR组合预测方法不仅有效降低了预测的复杂度,而且保证原始风电序列经模态分解处理后具有小的重构误差。仿真结果表明,与其他预测模型相比,所提方法具有较高的超短期风电功率预测精度。 展开更多
关键词 超短期风电预测 最小二乘支持向量回归 互补集合经验模态分解 缎蓝园丁鸟优化算法 组合模型
下载PDF
基于小波阈值去噪和CEEMD的混合三端直流输电线路故障测距 被引量:28
9
作者 高淑萍 徐振曦 +2 位作者 宋国兵 邵明星 姜元月 《电力系统保护与控制》 CSCD 北大核心 2022年第3期29-40,共12页
针对行波法测距精度受波速、行波波头标定的精度以及噪声的影响,提出一种基于小波阈值去噪和CEEMD-HT结合的混合三端直流输电线路测距方法。首先利用小波阈值去噪对故障信号滤噪,然后对滤噪后的信号使用互补集合经验模态分解和希尔伯特... 针对行波法测距精度受波速、行波波头标定的精度以及噪声的影响,提出一种基于小波阈值去噪和CEEMD-HT结合的混合三端直流输电线路测距方法。首先利用小波阈值去噪对故障信号滤噪,然后对滤噪后的信号使用互补集合经验模态分解和希尔伯特变换标定初始波头的到达时间。再根据故障行波到达测量端时间比值识别故障支路。最后考虑到行波波速难以精确确定,基于已知线路长度和初始波头到达时间,提出一种不受波速影响的测距方法。仿真结果表明,所提方法能够有效标定波头,且测距结果不受波速、故障距离、故障类型、过渡电阻及噪声的影响。与利用波速计算的双端法、HHT及小波包测距算法相比,该方法的测距误差更小。 展开更多
关键词 混合三端直流输电系统 行波法 时频图 互补集合经验模态分解 三端故障测距
下载PDF
基于CEEMD的心音信号小波包去噪算法研究 被引量:28
10
作者 董利超 郭兴明 郑伊能 《振动与冲击》 EI CSCD 北大核心 2019年第9期192-198,222,共8页
针对传统心音去噪方法易将其部分高频有用信息作为噪声滤除而造成滤波后的心音信号失真及信息丢失的问题,提出了一种基于互补总体经验模态分解(CEEMD)的小波包变换去噪算法。首先通过互补总体经验模态分解将心音信号分解为从高频到低频... 针对传统心音去噪方法易将其部分高频有用信息作为噪声滤除而造成滤波后的心音信号失真及信息丢失的问题,提出了一种基于互补总体经验模态分解(CEEMD)的小波包变换去噪算法。首先通过互补总体经验模态分解将心音信号分解为从高频到低频的不同固有模态函数分量(IMFs),并利用自相关函数客观界定信号的模态分量范围;然后对噪声主导模态分量和混叠模态分量采用小波包变换进行滤波提取有用信息后,与剩余固有模态分量进行重构得到去噪后的信号。实验结果表明,改进的算法不仅可以去除心音中的噪声成分,明显改善心音信号的信噪比和均方根误差,而且能够有效保留信号的高频有用信息,且在不同噪声水平下的去噪性能均优于传统算法,鲁棒性较好。 展开更多
关键词 心音 互补总体经验模式分解 自相关函数 小波包 去噪
下载PDF
基于CEEMD和改进时间序列模型的超短期风功率多步预测 被引量:26
11
作者 赵征 汪向硕 《太阳能学报》 EI CAS CSCD 北大核心 2020年第7期352-358,共7页
根据风功率非平稳特性,提出一种基于互补集合经验模态分解和时间序列分析方法中的差分自回归滑动平均模型的新型风功率组合多步预测模型。首先对风功率序列进行互补集合经验模态分解,以降低风功率序列的非平稳特性;之后采用模糊熵理论... 根据风功率非平稳特性,提出一种基于互补集合经验模态分解和时间序列分析方法中的差分自回归滑动平均模型的新型风功率组合多步预测模型。首先对风功率序列进行互补集合经验模态分解,以降低风功率序列的非平稳特性;之后采用模糊熵理论对各分量进行复杂度评估,对复杂度相近的相邻分量重新组合,从而有效降低预测时间和计算量;然后对新组合的各分量建立差分自回归滑动平均(ARIMA)模型,再对各分量进行残差序列检验,对存在异方差特性的分量建立ARIMA-GARCH模型;最后叠加各分量预测结果得到最终的风功率多步预测值。实验结果表明,所提的组合预测模型具有较高的预测精度。 展开更多
关键词 风功率预测 互补集合经验模态分解 模糊熵 ARIMA-GARCH模型 多步预测
下载PDF
基于互补集总经验模态分解和局部异常因子的有载分接开关状态特征提取及异常状态诊断 被引量:25
12
作者 张知先 陈伟根 +2 位作者 汤思蕊 王有元 万福 《电工技术学报》 EI CSCD 北大核心 2019年第21期4508-4518,共11页
为了及时发现和诊断有载分接开关(OLTC)的异常状态,在特征提取方面,结合驱动电机电流信号选取OLTC振动信号的特定时段,以突出状态特征;利用互补集总经验模态分解(CEEMD)得到振动信号的固有模态函数(IMF),针对OLTC振动信号的特点,提出基... 为了及时发现和诊断有载分接开关(OLTC)的异常状态,在特征提取方面,结合驱动电机电流信号选取OLTC振动信号的特定时段,以突出状态特征;利用互补集总经验模态分解(CEEMD)得到振动信号的固有模态函数(IMF),针对OLTC振动信号的特点,提出基于IMF能量特征的降噪算法;设计了时频矩阵划分算法,提取划分线、峭度、包络谱熵、时频矩阵能量密度、时频矩阵变异系数等特征参量。在异常状态诊断方面,通过多个振动测点,同时实现OLTC本体和传动机构的异常状态诊断;建立了以局部异常因子(LOF)为诊断参量的OLTC异常状态诊断方法,通过待测样本与正常样本集的比较来发现和诊断OLTC的异常状态,具有较好的普适性。仿真和实验结果表明,基于该文提出的方法能有效发现和诊断OLTC的异常状态。 展开更多
关键词 有载分接开关 振动信号降噪 时频分析 互补集总经验模态分解 局部异常因子
下载PDF
光纤周界入侵信号特征提取与识别方法的研究 被引量:24
13
作者 蒋立辉 刘杰生 +2 位作者 熊兴隆 王维波 李猛 《激光与红外》 CAS CSCD 北大核心 2017年第7期906-913,共8页
提出一种基于互补经验模态分解(CEEMD)奇异值熵结合多核支持向量机(SVM)的入侵信号特征提取与识别方法。首先,采用CEEMD方法对入侵信号进行分解得到若干个本征模态函数(IMF);其次,再对IMF分量进行奇异值分解,计算其奇异值熵;然后,根据... 提出一种基于互补经验模态分解(CEEMD)奇异值熵结合多核支持向量机(SVM)的入侵信号特征提取与识别方法。首先,采用CEEMD方法对入侵信号进行分解得到若干个本征模态函数(IMF);其次,再对IMF分量进行奇异值分解,计算其奇异值熵;然后,根据奇异值熵筛选出有用IMF分量,构建特征向量;最后,采用多核支持向量机识别入侵信号。采用实际采集的攀爬,敲击,汽车,风等场外入侵信号进行了实验验证,结果表明:CEEMD方法有效解决了EEMD的残留白噪声问题,多核SVM比单核SVM具有更好的识别率,攀爬入侵信号识别率达到95%。 展开更多
关键词 分布式光纤传感 互补经验模态分解 本征模态函数 奇异值熵 多核支持向量机
下载PDF
CEEMD和小波半软阈值相结合的滚动轴承降噪 被引量:23
14
作者 王亚萍 匡宇麒 +2 位作者 葛江华 许迪 孙永国 《振动.测试与诊断》 EI CSCD 北大核心 2018年第1期80-86,共7页
针对滚动轴承振动信号降噪处理时如何保证信号边缘信息完整性的问题,提出将互补集合经验模态分解(complementary ensemble empirical mode decomposition,简称CEEMD)与小波半软阈值相结合的信号降噪方法,对滚动轴承故障高频振动信号进... 针对滚动轴承振动信号降噪处理时如何保证信号边缘信息完整性的问题,提出将互补集合经验模态分解(complementary ensemble empirical mode decomposition,简称CEEMD)与小波半软阈值相结合的信号降噪方法,对滚动轴承故障高频振动信号进行降噪处理。首先,采用CEEMD方法对故障振动信号进行分解,针对信号特点自适应获取不同频段模态分量;其次,将对包含噪声污染的高频信号模态分量进行相关性分析,得到含噪成分较高的高频模态分量,进一步采用小波半软阈值进行降噪处理;最后,将降噪后的模态分量同残余分量进行信号重构,完成降噪过程。分析结果表明,相对于传统小波阈值降噪和CEEMD强制降噪方法,提出的方法能够有效去除高频信号的噪声,且最大程度地保证了原始信号的完整性,降噪效果更好。 展开更多
关键词 滚动轴承 信号降噪 互补集合经验模态分解 小波半软阈值
下载PDF
基于CEEMD和GWO的超短期风速预测 被引量:22
15
作者 王静 李维德 《电力系统保护与控制》 EI CSCD 北大核心 2018年第9期69-74,共6页
风电场风速预测对电力系统的合理调度、安全运行等方面有重大的影响。针对风速时间序列的非线性特征造成其预测精度不佳的问题,采用基于互补型集成经验模态分解和灰狼优化算法优化支持向量回归机的超短期风速组合预测模型来解决。首先... 风电场风速预测对电力系统的合理调度、安全运行等方面有重大的影响。针对风速时间序列的非线性特征造成其预测精度不佳的问题,采用基于互补型集成经验模态分解和灰狼优化算法优化支持向量回归机的超短期风速组合预测模型来解决。首先利用该模型对非平稳的风速时间序列进行CEEMD分解,分解为一系列的相对平稳分量。然后对各个分量利用灰狼算法优化SVR进行预测。最后,将每一个分量的预测结果集成输出作为最终的风速预测结果。结果表明,该预测模型比其他智能算法基准模型预测精度高,且在风速预测中具有优越性。 展开更多
关键词 本征模态函数 互补型集成经验模态分解 支持向量回归机 灰狼优化算法 超短期风速预测
下载PDF
基于改进小波阈值函数和CEEMD电能质量扰动检测 被引量:22
16
作者 周金 高云鹏 +3 位作者 吴聪 古庭赟 徐长宝 吕黔苏 《电子测量与仪器学报》 CSCD 北大核心 2019年第1期141-148,共8页
为提高在噪声环境下电能质量扰动检测定位的准确性,提出基于改进小波阈值函数和完备总体经验模态分解(CEEMD)的电能质量扰动检测算法。在采用CEEMD处理电能质量扰动信号的基础上,通过排列熵计算各固有模态函数的随机噪声强度,利用小波... 为提高在噪声环境下电能质量扰动检测定位的准确性,提出基于改进小波阈值函数和完备总体经验模态分解(CEEMD)的电能质量扰动检测算法。在采用CEEMD处理电能质量扰动信号的基础上,通过排列熵计算各固有模态函数的随机噪声强度,利用小波改进阈值函数对噪声强度高于排列熵值的分量降噪,并对降噪后分量进行Hilbert-Huang变换,求取定位扰动起止点以及频率等参数。将该算法与CEEMD舍弃高频分量和小波阈值函数降噪方法的对比分析,结果表明算法不仅具有较强的抗噪性,而且能有效保留高频信息不被滤除。以PSCAD/EMTC双馈式风力发电系统中的单相短路和两相短路为例,仿真验证了所提算法的有效性,最后搭建了基于PXI和Lab VIEW平台电能质量扰动检测平台,为应用于工程实践中奠定基础。 展开更多
关键词 完备总体经验模态分解 改进小波阈值函数 排列熵 双馈式风力发电系统
下载PDF
基于CEEMD和小波包的降噪方法研究 被引量:22
17
作者 杨孟 王瑾 +1 位作者 周西峰 郭前岗 《南京邮电大学学报(自然科学版)》 北大核心 2018年第2期41-47,共7页
研究了CEEMD降噪方法、小波以及小波包阈值降噪方法,针对其各自的优缺点,提出了改进的CEEMD和小波包的阈值降噪方法。该方法利用小波包分解精细的分析能力和CEEMD更强的抑制误差能力,并加入两种不同类型的小波阈值降噪方法进一步滤除噪... 研究了CEEMD降噪方法、小波以及小波包阈值降噪方法,针对其各自的优缺点,提出了改进的CEEMD和小波包的阈值降噪方法。该方法利用小波包分解精细的分析能力和CEEMD更强的抑制误差能力,并加入两种不同类型的小波阈值降噪方法进一步滤除噪声,能在有效去除噪声信号的同时,更大程度地保留有用信号。仿真分析表明,该方法的信号降噪效果更佳。 展开更多
关键词 信号处理 降噪 互补集合经验模态分解 小波包变换
下载PDF
基于CEEMD与GA-SVR的猪肉价格集成预测模型 被引量:19
18
作者 张大斌 蔡超敏 +1 位作者 凌立文 陈善盈 《系统科学与数学》 CSCD 北大核心 2020年第6期1061-1073,共13页
为提高猪肉价格预测的准确性,结合互补集合经验模态分解(CEEMD)的分解能力和基于遗传算法的支持向量回归(GA-SVR)的自适应预测功能,构建猪肉价格集成预测模型.首先为解决猪肉价格的复杂波动特征,通过CEEMD对猪肉价格分解得到本征模态函... 为提高猪肉价格预测的准确性,结合互补集合经验模态分解(CEEMD)的分解能力和基于遗传算法的支持向量回归(GA-SVR)的自适应预测功能,构建猪肉价格集成预测模型.首先为解决猪肉价格的复杂波动特征,通过CEEMD对猪肉价格分解得到本征模态函数(IMF)序列集;然后使用排序熵(PE)对IMF序列进行复杂度分析,进一步使用快速傅里叶变换方法(FFT)分解复杂度高的序列;再利用灰色关联度(GCD)对IMF序列集进行关联性分析,聚合相似IMF序列;最后基于各IMF序列的数据特征构建相应的GA-SVR预测模型,并将子序列的预测结果集成获得最终价格预测值.以中国集贸市场的猪肉价格为研究对象,实证结果表明,该集成预测模型在预测精度和方向性指标上,显著优于其他单预测模型和分解集成预测模型. 展开更多
关键词 互补集合经验模态分解 遗传算法 支持向量回归 排序熵 灰色关联度 猪肉价格预测
原文传递
CEEMD结合改进小波阈值的激光雷达信号去噪算法 被引量:17
19
作者 马愈昭 刘逵 +2 位作者 张岩峰 冯帅 熊兴隆 《系统工程与电子技术》 EI CSCD 北大核心 2023年第1期93-100,共8页
激光雷达远距离回波信号受噪声影响,严重失真。为了有效去除信号的噪声,提高回波信号信噪比,提出一种互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)结合改进小波阈值的去噪算法。CEEMD可以自适应... 激光雷达远距离回波信号受噪声影响,严重失真。为了有效去除信号的噪声,提高回波信号信噪比,提出一种互补集合经验模态分解(complementary ensemble empirical mode decomposition,CEEMD)结合改进小波阈值的去噪算法。CEEMD可以自适应地分解非线性和非平稳信号,改进小波阈值函数具有高阶可导特性,能够克服硬阈值、软阈值函数各自存在的问题。两种方法结合,可以更有效地去除噪声。首先,对回波信号进行CEEMD分解,得到若干固有模态函数(intrinsic mode function,IMF)。其次,通过相关系数法计算IMF分量与信号的相关系数,确定相关分量和不相关分量。最后,对不相关分量使用小波改进阈值法进行去噪,对相关分量使用粗糙惩罚法进行平滑,再重构信号。基于实测数据的实验结果表明,所提算法比CEEMD去噪法和CEEMD结合原改进阈值去噪法,信噪比分别提升了2.65 dB和0.58 dB。 展开更多
关键词 激光雷达 信号处理 互补集合经验模态分解 小波阈值去噪
下载PDF
基于改进CEEMD-CS-ELM的短期风速预测 被引量:18
20
作者 高桂革 原阔 +1 位作者 曾宪文 郑炳杰 《太阳能学报》 EI CAS CSCD 北大核心 2021年第7期284-289,共6页
针对风速序列非线性对预测结果的影响,提出一种基于改进互补集合经验模态分解和极限学习机的风速预测模型。首先对风速序列进行改进互补集合经验模态分解,并利用相空间重构得到若干新的时间序列,以降低风速序列的不平稳性。通过改进布... 针对风速序列非线性对预测结果的影响,提出一种基于改进互补集合经验模态分解和极限学习机的风速预测模型。首先对风速序列进行改进互补集合经验模态分解,并利用相空间重构得到若干新的时间序列,以降低风速序列的不平稳性。通过改进布谷鸟算法矫正极限学习机模型的输入参数,预测处理后的风速序列。通过实例仿真,比较改进前后不同模型的相对误差,说明该文预测模型的合理性。 展开更多
关键词 风速 预测分析 互补集合经验模态分解 布谷鸟算法 相空间重构 极限学习机
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部