虚拟电厂(virtual power plant,VPP)作为整合“源-荷-储”多环节资源的新一代智能控制技术,能够打破地域限制,实现广域范围内的能源互联共享。为应对同一区域内不同VPP“源-荷”资源差异性,解决分布式可再生能源(distributed renewable ...虚拟电厂(virtual power plant,VPP)作为整合“源-荷-储”多环节资源的新一代智能控制技术,能够打破地域限制,实现广域范围内的能源互联共享。为应对同一区域内不同VPP“源-荷”资源差异性,解决分布式可再生能源(distributed renewable energy,DRE)波动性与用电行为不确定性造成的功率实时平衡问题,引入集群服务商对包含多类型VPP的集群进行合理管控,构建包含多异质DRE、可控机组、储能、电动汽车以及可控负荷的VPP集群系统架构。对VPP集群内部电能互济进行独立定价以激励VPP参与联合调度,针对随机变量可预测性和累积误差随决策时间推进逐步增加的特性,建立包含日前协调调度与日内滚动优化的两阶段联合优化模型,日前阶段侧重于多VPP集群参与外部市场交易和内部电能互济,日内阶段侧重于VPP功率平衡降低偏差,形成多VPP间电能共享交互的多时间尺度调度策略;最后,以整合不同分布式能源的多VPP集群系统为例进行仿真分析,结果表明,通过多VPP协调互动和多时间尺度滚动优化,有效改善VPP集群系统电能均衡问题,显著提升整体运行经济性。展开更多
With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage co...With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.展开更多
Taking the consumption rate of renewable energy and the operation cost of hybrid AC/DC microgrid as the optimization objectives,the adjustment of load demand curves is carried out considering the demand side response(...Taking the consumption rate of renewable energy and the operation cost of hybrid AC/DC microgrid as the optimization objectives,the adjustment of load demand curves is carried out considering the demand side response(DSR)on the load side.The complementary utilization of renewable energy between AC area and DC area is achieved to meet the load demand on the source side.In the network side,the hybrid AC/DC microgrids purchase electricity from the power grid at the time-of-use(TOU)price and sell the surplus power of renewable energy to the power grid for profits.The improved memetic algorithm(IMA)is introduced and applied to solve the established mathematical model.The promotion effect of the proposed source-network-load coordination strategies on the optimal operation of hybrid AC/DC microgrid is verified.展开更多
文摘虚拟电厂(virtual power plant,VPP)作为整合“源-荷-储”多环节资源的新一代智能控制技术,能够打破地域限制,实现广域范围内的能源互联共享。为应对同一区域内不同VPP“源-荷”资源差异性,解决分布式可再生能源(distributed renewable energy,DRE)波动性与用电行为不确定性造成的功率实时平衡问题,引入集群服务商对包含多类型VPP的集群进行合理管控,构建包含多异质DRE、可控机组、储能、电动汽车以及可控负荷的VPP集群系统架构。对VPP集群内部电能互济进行独立定价以激励VPP参与联合调度,针对随机变量可预测性和累积误差随决策时间推进逐步增加的特性,建立包含日前协调调度与日内滚动优化的两阶段联合优化模型,日前阶段侧重于多VPP集群参与外部市场交易和内部电能互济,日内阶段侧重于VPP功率平衡降低偏差,形成多VPP间电能共享交互的多时间尺度调度策略;最后,以整合不同分布式能源的多VPP集群系统为例进行仿真分析,结果表明,通过多VPP协调互动和多时间尺度滚动优化,有效改善VPP集群系统电能均衡问题,显著提升整体运行经济性。
基金supported by Science and Technology Project of SGCC(SGSW0000FZGHBJS2200070)。
文摘With the increasing penetration of wind and solar energies,the accompanying uncertainty that propagates in the system places higher requirements on the expansion planning of power systems.A source-grid-load-storage coordinated expansion planning model based on stochastic programming was proposed to suppress the impact of wind and solar energy fluctuations.Multiple types of system components,including demand response service entities,converter stations,DC transmission systems,cascade hydropower stations,and other traditional components,have been extensively modeled.Moreover,energy storage systems are considered to improve the accommodation level of renewable energy and alleviate the influence of intermittence.Demand-response service entities from the load side are used to reduce and move the demand during peak load periods.The uncertainties in wind,solar energy,and loads were simulated using stochastic programming.Finally,the effectiveness of the proposed model is verified through numerical simulations.
基金supported by the National Natural Science Foundation of China(No.51577068)the National High Technology Research and Development Program of China(863 Program)(No.2015AA050104).
文摘Taking the consumption rate of renewable energy and the operation cost of hybrid AC/DC microgrid as the optimization objectives,the adjustment of load demand curves is carried out considering the demand side response(DSR)on the load side.The complementary utilization of renewable energy between AC area and DC area is achieved to meet the load demand on the source side.In the network side,the hybrid AC/DC microgrids purchase electricity from the power grid at the time-of-use(TOU)price and sell the surplus power of renewable energy to the power grid for profits.The improved memetic algorithm(IMA)is introduced and applied to solve the established mathematical model.The promotion effect of the proposed source-network-load coordination strategies on the optimal operation of hybrid AC/DC microgrid is verified.