In this paper, we propose a new smooth function that possesses a property not satisfied by the existing smooth functions. Based on this smooth function, we discuss the existence and continuity of the smoothing path fo...In this paper, we propose a new smooth function that possesses a property not satisfied by the existing smooth functions. Based on this smooth function, we discuss the existence and continuity of the smoothing path for solving the P0 function nonlinear complementarity problem (NCP). Using the characteristics of the new smooth function, we investigate the boundedness of the iteration sequence generated by the non-interior continuation methods for solving the P0 function NCP under the assumption that the solution set of the NCP is nonempty and bounded. We show that the assumption that the solution set of the NCP is nonempty and bounded is weaker than those required by a few existing continuation methods for solving the NCP.展开更多
Communities with more species could have a greater variety of species' characteristics, leading to more effective use of limiting resources through niche partitioning (complementarity) and therefore greater product...Communities with more species could have a greater variety of species' characteristics, leading to more effective use of limiting resources through niche partitioning (complementarity) and therefore greater production. The effect of phenologlcal complementarity (PC) on ecosystem production has not been fully Investigated. The seasonal responses of all vascular plant species were tracked to test the effect of phenologlcal complementarity on ecosystem production within a natural stable steppe community. Although a significant phenologlcal pattern was observed, PC had no significant correlation with community production. The value of PC varied with years, but was observed only In a relatively narrow range during the experimental period. Species diversity (richness and evenness) had no correlation with the ecosystem production. The results suggest that the effect of PC may be saturated and has no contribution to the improvement of ecosystem production In a stable natural grassland community with abundant species.展开更多
In this paper, we give a smoothing neural network algorithm for absolute value equations (AVE). By using smoothing function, we reformulate the AVE as a differentiable unconstrained optimization and we establish a ste...In this paper, we give a smoothing neural network algorithm for absolute value equations (AVE). By using smoothing function, we reformulate the AVE as a differentiable unconstrained optimization and we establish a steep descent method to solve it. We prove the stability and the equilibrium state of the neural network to be a solution of the AVE. The numerical tests show the efficient of the proposed algorithm.展开更多
This paper introduces a new concept of exceptional family forvariational inequality problems with a general convex constrained set. By using this new concept, the authors establish a general sufficient condition for t...This paper introduces a new concept of exceptional family forvariational inequality problems with a general convex constrained set. By using this new concept, the authors establish a general sufficient condition for the existence of a solution to the problem. This condition is weaker than many known solution conditions and it is also necessary for pseudomonotone variational inequalities. Sufficient solution conditions for a class of nonlinear complementarity problems with P0 mappings are also obtained.展开更多
We establish that the generalized Fischer-Burmeister(FB) function and penalized Generalized Fischer-Burmeister (FB) function defined on symmetric cones are complementarity functions (C-functions), in terms of Eu...We establish that the generalized Fischer-Burmeister(FB) function and penalized Generalized Fischer-Burmeister (FB) function defined on symmetric cones are complementarity functions (C-functions), in terms of Euclidean Jordan algebras, and the Generalized Fischer-Burmeister complementarity function for the symmetric cone complementarity problem (SCCP). It provides an affirmative answer to the open question by Kum and Lim (Kum S H, Lim Y. Penalized complementarity functions on symmetric cones. J. Glob. Optim.. 2010, 46: 475-485) for any positive integer.展开更多
In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear ...In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.展开更多
In this paper, an ODE-type trust region algorithm for solving a class of nonlinear complementarity problems is proposed. A feature of this algorithm is that only the solution of linear systems of equations is required...In this paper, an ODE-type trust region algorithm for solving a class of nonlinear complementarity problems is proposed. A feature of this algorithm is that only the solution of linear systems of equations is required at each iteration, thus avoiding the need for solving a quadratic subproblem with a trust region bound. Under some conditions, it is proven that this algorithm is globally and locally superlinear convergent. The limited numerical examples show its efficiency.展开更多
Based on a class of functions, which generalize the squared Fischer-Burmeister NCP function and have many desirable properties as the latter function has, we reformulate nonlinear complementarity problem (NCP for shor...Based on a class of functions, which generalize the squared Fischer-Burmeister NCP function and have many desirable properties as the latter function has, we reformulate nonlinear complementarity problem (NCP for short) as an equivalent unconstrained optimization problem, for which we propose a derivative-free de- scent method in monotone case. We show its global convergence under some mild conditions. If F, the function involved in NCP, is Ro-function, the optimization problem has bounded level sets. A local property of the merit function is discussed. Finally, we report some numerical results.展开更多
It is well known that a linear complementarity problem (LCP) can be formulated as a system of nonsmooth equations F(x) = 0, where F is a map from Rninto itself. Using the aggregate function, we construct a smooth Newt...It is well known that a linear complementarity problem (LCP) can be formulated as a system of nonsmooth equations F(x) = 0, where F is a map from Rninto itself. Using the aggregate function, we construct a smooth Newton homotopy H(x,t) = 0. Under certain assumptions, we prove the existence of a smooth path defined by the Newton homotopy which leads to a solution of the original problem, and study limiting properties of the homotopy path.展开更多
This paper considers the so-called expected residual minimization(ERM)formulation for stochastic second-order cone complementarity problems,which is based on a new complementarity function called termwise residual com...This paper considers the so-called expected residual minimization(ERM)formulation for stochastic second-order cone complementarity problems,which is based on a new complementarity function called termwise residual complementarity function associated with second-order cone.We show that the ERM model has bounded level sets under the stochastic weak R0-property.We further derive some error bound results under either the strong monotonicity or some kind of constraint qualifications.Then,we apply the Monte Carlo approximation techniques to solve the ERM model and establish a comprehensive convergence analysis.Furthermore,we report some numerical results on a stochastic second-order cone model for optimal power flow in radial networks.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 19871016 and 19731001).
文摘In this paper, we propose a new smooth function that possesses a property not satisfied by the existing smooth functions. Based on this smooth function, we discuss the existence and continuity of the smoothing path for solving the P0 function nonlinear complementarity problem (NCP). Using the characteristics of the new smooth function, we investigate the boundedness of the iteration sequence generated by the non-interior continuation methods for solving the P0 function NCP under the assumption that the solution set of the NCP is nonempty and bounded. We show that the assumption that the solution set of the NCP is nonempty and bounded is weaker than those required by a few existing continuation methods for solving the NCP.
基金Supported by the National Natural Science Foundation (90102011) and National key Basic Research Special Funds (2002CB111505) of China.We thank Mr Wei-Dong Liu, Mr Guang-Li He, Ms Wen-Jing Liu, and Mr Bao-Hui Zhang for practical assistance. Thanks also to Dr Guang-Lian QIN for helpful advice on data analysis and to Drs Sa Xiao, Hui-Min Yang, Xin Luan, Ying Deng and You-Cai Xiong for helpful suggestions on an early version of the manuscript.
文摘Communities with more species could have a greater variety of species' characteristics, leading to more effective use of limiting resources through niche partitioning (complementarity) and therefore greater production. The effect of phenologlcal complementarity (PC) on ecosystem production has not been fully Investigated. The seasonal responses of all vascular plant species were tracked to test the effect of phenologlcal complementarity on ecosystem production within a natural stable steppe community. Although a significant phenologlcal pattern was observed, PC had no significant correlation with community production. The value of PC varied with years, but was observed only In a relatively narrow range during the experimental period. Species diversity (richness and evenness) had no correlation with the ecosystem production. The results suggest that the effect of PC may be saturated and has no contribution to the improvement of ecosystem production In a stable natural grassland community with abundant species.
文摘In this paper, we give a smoothing neural network algorithm for absolute value equations (AVE). By using smoothing function, we reformulate the AVE as a differentiable unconstrained optimization and we establish a steep descent method to solve it. We prove the stability and the equilibrium state of the neural network to be a solution of the AVE. The numerical tests show the efficient of the proposed algorithm.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 19731001) .
文摘This paper introduces a new concept of exceptional family forvariational inequality problems with a general convex constrained set. By using this new concept, the authors establish a general sufficient condition for the existence of a solution to the problem. This condition is weaker than many known solution conditions and it is also necessary for pseudomonotone variational inequalities. Sufficient solution conditions for a class of nonlinear complementarity problems with P0 mappings are also obtained.
基金The Specialized Research Fund(20132121110009)for the Doctoral Program of Higher Education
文摘We establish that the generalized Fischer-Burmeister(FB) function and penalized Generalized Fischer-Burmeister (FB) function defined on symmetric cones are complementarity functions (C-functions), in terms of Euclidean Jordan algebras, and the Generalized Fischer-Burmeister complementarity function for the symmetric cone complementarity problem (SCCP). It provides an affirmative answer to the open question by Kum and Lim (Kum S H, Lim Y. Penalized complementarity functions on symmetric cones. J. Glob. Optim.. 2010, 46: 475-485) for any positive integer.
基金Supported by University Science Research Project of Anhui Province(2023AH052921)Outstanding Youth Talent Project of Anhui Province(gxyq2021254)。
文摘In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method.
基金Supported by the Natural Science Foundation of Hainan Province(80552)
文摘In this paper, an ODE-type trust region algorithm for solving a class of nonlinear complementarity problems is proposed. A feature of this algorithm is that only the solution of linear systems of equations is required at each iteration, thus avoiding the need for solving a quadratic subproblem with a trust region bound. Under some conditions, it is proven that this algorithm is globally and locally superlinear convergent. The limited numerical examples show its efficiency.
基金the National Natural Science Foundation of China
文摘Based on a class of functions, which generalize the squared Fischer-Burmeister NCP function and have many desirable properties as the latter function has, we reformulate nonlinear complementarity problem (NCP for short) as an equivalent unconstrained optimization problem, for which we propose a derivative-free de- scent method in monotone case. We show its global convergence under some mild conditions. If F, the function involved in NCP, is Ro-function, the optimization problem has bounded level sets. A local property of the merit function is discussed. Finally, we report some numerical results.
文摘It is well known that a linear complementarity problem (LCP) can be formulated as a system of nonsmooth equations F(x) = 0, where F is a map from Rninto itself. Using the aggregate function, we construct a smooth Newton homotopy H(x,t) = 0. Under certain assumptions, we prove the existence of a smooth path defined by the Newton homotopy which leads to a solution of the original problem, and study limiting properties of the homotopy path.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.71831008,11671250,11431004 and 11601458)Humanity and Social Science Foundation of Ministry of Education of China(No.15YJA630034)+2 种基金Shandong Province Natural Science Fund(No.ZR2014AM012)Higher Educational Science and Technology Program of Shandong Province(No.J13LI09)Scientific Research of Young Scholar of Qufu Normal University(No.XKJ201315).
文摘This paper considers the so-called expected residual minimization(ERM)formulation for stochastic second-order cone complementarity problems,which is based on a new complementarity function called termwise residual complementarity function associated with second-order cone.We show that the ERM model has bounded level sets under the stochastic weak R0-property.We further derive some error bound results under either the strong monotonicity or some kind of constraint qualifications.Then,we apply the Monte Carlo approximation techniques to solve the ERM model and establish a comprehensive convergence analysis.Furthermore,we report some numerical results on a stochastic second-order cone model for optimal power flow in radial networks.