A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isotherm...A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted.展开更多
Based on the theories and approaches in biomechanics, the mechanism and pattern of niche construction were discussed systematically. Through establishing the spatial pattern of niche and its measuring-fitness formula,...Based on the theories and approaches in biomechanics, the mechanism and pattern of niche construction were discussed systematically. Through establishing the spatial pattern of niche and its measuring-fitness formula, and the dynamic system models of single- and two-population with niche construction, including corresponding theoretical analysis and numerical simulation on their evolutionary dynamics of population and the mechanism of competitive coexistence, the co-evolutionary relationship between organisms and their environments was revealed. The results indicate that population dynamics is governed by positive feedback between primary ecological factors and resource content. Niche construction generates an evolutionary effect in system by influencing the fitness of population. A threshold effect exists in single population dynamic system, in dynamic system of two competitive populations, niche construction can lead to alternative competitive consequences, which may be a potential mechanism to explain the competitive coexistence of species.展开更多
To establish a theoretical foundation for simultaneous removal of multi-heavy metals,the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from their single and binary systems by Ca-alginate immobilized activated carbon and Sa...To establish a theoretical foundation for simultaneous removal of multi-heavy metals,the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from their single and binary systems by Ca-alginate immobilized activated carbon and Saccharomyces cerevisiae (CAS) was investigated.The CAS beads were characterized by Scanning electron microscope (SEM) and Fourier transformed infrared spectroscopy (FTTR).The effect of initial pH,adsorbent dosage,contact time and initial metal ions concentration on the adsorption process was systematically investigated.The experimental maximum contents of Cu(Ⅱ) and Pb(Ⅱ) uptake capacity were determined as 64.90 and 166.31 mg/g,respectively.The pseudo-second-order rate equation and Langmuir isotherm model could explain respectively the kinetic and isotherm experimental data of Cu(Ⅱ) and Pb(Ⅱ) ions in single-component systems with much satisfaction.The experimental adsorption data of Cu(Ⅱ) and Pb(Ⅱ) ions in binary system were best described by the extended Freundlich isotherm and the extended Langmuir isotherm,respectively.The removal of Cu(lⅡ) ions was more significantly influenced by the presence of the coexistent Pb(Ⅱ) species,while the Pb(Ⅱ) removal was affected slightly by varying the initial concentration of Cu(Ⅱ).The CAS was successfully regenerated using 1 mol/L HNO3 solution.展开更多
基金financially supported by the National Key R&D Program of China (No.2021YFB3700400)the National Natural Science Foundation of China (Nos.52074030,51904021,and 52174294)。
文摘A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200℃, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding,the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900-1100℃ was predicted.
基金Project supported by the National Natural Science Foundation of China (No.30470298)the National Social Science Foundation of China (No.04AJL007)
文摘Based on the theories and approaches in biomechanics, the mechanism and pattern of niche construction were discussed systematically. Through establishing the spatial pattern of niche and its measuring-fitness formula, and the dynamic system models of single- and two-population with niche construction, including corresponding theoretical analysis and numerical simulation on their evolutionary dynamics of population and the mechanism of competitive coexistence, the co-evolutionary relationship between organisms and their environments was revealed. The results indicate that population dynamics is governed by positive feedback between primary ecological factors and resource content. Niche construction generates an evolutionary effect in system by influencing the fitness of population. A threshold effect exists in single population dynamic system, in dynamic system of two competitive populations, niche construction can lead to alternative competitive consequences, which may be a potential mechanism to explain the competitive coexistence of species.
基金Project(11JJ2031)supported by the Key Project of Natural Science Foundation of Hunan Province,China
文摘To establish a theoretical foundation for simultaneous removal of multi-heavy metals,the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from their single and binary systems by Ca-alginate immobilized activated carbon and Saccharomyces cerevisiae (CAS) was investigated.The CAS beads were characterized by Scanning electron microscope (SEM) and Fourier transformed infrared spectroscopy (FTTR).The effect of initial pH,adsorbent dosage,contact time and initial metal ions concentration on the adsorption process was systematically investigated.The experimental maximum contents of Cu(Ⅱ) and Pb(Ⅱ) uptake capacity were determined as 64.90 and 166.31 mg/g,respectively.The pseudo-second-order rate equation and Langmuir isotherm model could explain respectively the kinetic and isotherm experimental data of Cu(Ⅱ) and Pb(Ⅱ) ions in single-component systems with much satisfaction.The experimental adsorption data of Cu(Ⅱ) and Pb(Ⅱ) ions in binary system were best described by the extended Freundlich isotherm and the extended Langmuir isotherm,respectively.The removal of Cu(lⅡ) ions was more significantly influenced by the presence of the coexistent Pb(Ⅱ) species,while the Pb(Ⅱ) removal was affected slightly by varying the initial concentration of Cu(Ⅱ).The CAS was successfully regenerated using 1 mol/L HNO3 solution.