期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
COMPACT FINITE DIFFERENCE-FOURIER SPECTRAL METHOD FOR THREE-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 被引量:5
1
作者 熊忠民 凌国灿 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1996年第4期296-306,共11页
A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite differen... A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported. 展开更多
关键词 compact finite difference Fourier spectral method numerical simulation vortex dislocation
下载PDF
传输线方程高精度直接积分的数值求解方法
2
作者 张萍 刘宁 +1 位作者 聂鑫鹏 吉增强 《电气工程学报》 CSCD 2023年第4期370-377,共8页
提出一种基于精细积分法与时域微分求积法相结合的传输线方程的数值求解方法。首先将传输线方程采用基于紧致有限差分法的四阶差分格式进行空间离散,得到关于时间的一阶线性常微分方程组,四阶差分格式对于空间微分有很好的近似精度。然... 提出一种基于精细积分法与时域微分求积法相结合的传输线方程的数值求解方法。首先将传输线方程采用基于紧致有限差分法的四阶差分格式进行空间离散,得到关于时间的一阶线性常微分方程组,四阶差分格式对于空间微分有很好的近似精度。然后利用精细积分法与微分求积法对一阶线性常微分方程组进行数值求解。通过理论分析可知,与传统的传输线方程数值求解方法——时域有限差分法(Finite difference time domain,FDTD)相比,所提方法不涉及到状态矩阵求逆运算,保证了数值求解精度,并且其数值稳定性与计算时间、空间步长无关,可采用大步长进行数值计算,能够有效提高计算效率。最后利用仿真实例进行算法验证,结果显示,相比于时域有限差分法,所提方法能够抑制数值振荡,提高了计算精度。 展开更多
关键词 精细积分法 时域微分求积法 传输线方程 紧致有限差分法 时域有限差分法
下载PDF
FOURTH-ORDER COMPACT SCHEMES FOR HELMHOLTZ EQUATIONS WITH PIECEWISE WAVE NUMBERS IN THE POLAR COORDINATES 被引量:3
3
作者 Xiaolu Su Xiufang Feng Zhilin Li 《Journal of Computational Mathematics》 SCIE CSCD 2016年第5期499-510,共12页
In this paper, fourth-order compact finite difference schemes are proposed for solving Helmholtz equation with piecewise wave numbers in polar coordinates with axis-symmetric and in some cases that the solution depend... In this paper, fourth-order compact finite difference schemes are proposed for solving Helmholtz equation with piecewise wave numbers in polar coordinates with axis-symmetric and in some cases that the solution depends both of independent variables. The idea of the immersed interface method is applied to deal with the discontinuities in the wave number and certain derivatives of the solution. Numerical experiments are included to confirm the accuracy and efficiency of the proposed method. 展开更多
关键词 Helmholtz equation compact finite difference schemes Polar coordinate Theimmersed interface method High order method.
原文传递
三维不可压缩N-S方程的紧致有限差分和Fourier谱方法 被引量:2
4
作者 陆昌根 邵山 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2001年第4期45-49,共5页
采用高精度紧致有限差分———Fourier谱杂交的方法直接数值模拟了三维不可压缩的Navier Stokes方程 .该算法的时间离散采用三阶精度混合显隐分裂格式 ,空间离散则结合Fourier谱方法及高精度紧致有限差分逼近 .该方法与普通的有限差分... 采用高精度紧致有限差分———Fourier谱杂交的方法直接数值模拟了三维不可压缩的Navier Stokes方程 .该算法的时间离散采用三阶精度混合显隐分裂格式 ,空间离散则结合Fourier谱方法及高精度紧致有限差分逼近 .该方法与普通的有限差分格式相比 ,具有很高的逼近精度及波数分辨率 ;针对三维平面槽道流的情况 ,应用该算法 ,直接数值模拟了三维T S波在平面槽道流的传播问题 。 展开更多
关键词 紧致有限差分 FOURIER谱方法 数值模拟 流体力学
下载PDF
求解泊松方程的紧致修正法 被引量:3
5
作者 张昆 杨茉 《水动力学研究与进展(A辑)》 CSCD 北大核心 2011年第4期422-429,共8页
将紧致格式与低阶格式结合,构造紧致格式的修正项,并将修正项加入到源项中进行求解,得到了一种基于非均分网格求解泊松方程的紧致修正法,且将该方法应用于二维和三维泊松方程的数值求解中。数值计算结果表明:紧致修正方法的精度高于经... 将紧致格式与低阶格式结合,构造紧致格式的修正项,并将修正项加入到源项中进行求解,得到了一种基于非均分网格求解泊松方程的紧致修正法,且将该方法应用于二维和三维泊松方程的数值求解中。数值计算结果表明:紧致修正方法的精度高于经典方法的精度,但四阶紧致修正方法比二阶经典方法对网格的依赖性强。 展开更多
关键词 泊松方程 非等距网格 紧致差分格式 紧致修正法
原文传递
非线性对流扩散方程的预报校正紧差分格式 被引量:3
6
作者 杨录峰 《黑龙江大学自然科学学报》 CAS 北大核心 2013年第4期462-465,470,共5页
结合预报校正的MacComack方法与高阶紧致差分格式方法的优点,在空间导数采用四阶紧致差分格式进行离散之后,对得到的空间半离散格式采用预报校正的MacCormack方法进行时间推进,得到一种求解非线性对流扩散方程的高精度方法。数值试验表... 结合预报校正的MacComack方法与高阶紧致差分格式方法的优点,在空间导数采用四阶紧致差分格式进行离散之后,对得到的空间半离散格式采用预报校正的MacCormack方法进行时间推进,得到一种求解非线性对流扩散方程的高精度方法。数值试验表明,该格式可以有效求解非线性对流扩散方程,显示出算法的有效性。 展开更多
关键词 紧致差分格式 预报校正 MacCormack方法 非线性对流扩散方程
下载PDF
紧致方法对流动换热及静态分岔的模拟 被引量:2
7
作者 张昆 杨茉 《工程热物理学报》 EI CAS CSCD 北大核心 2012年第1期109-112,共4页
发展了基于投影法的紧致方法求解流动换热问题,对顶盖驱动流和侧壁加热的方腔内自然对流换热问题进行了数值模拟。与其它传统方法相比,紧致方法能在较少的网格结点下获得精度较高的计算结果。进一步,采用所发展的紧致方法对不同工况下的... 发展了基于投影法的紧致方法求解流动换热问题,对顶盖驱动流和侧壁加热的方腔内自然对流换热问题进行了数值模拟。与其它传统方法相比,紧致方法能在较少的网格结点下获得精度较高的计算结果。进一步,采用所发展的紧致方法对不同工况下的Rayleigh-Benard对流及其静态分岔现象进行了数值模拟。数值计算结果表明当长宽比变大时,底部努塞尔数会有小幅度增加。当长宽比为8时,用所发展的紧致方法不同的初场可以得出三种不同的流场和温度场。与基于QUICK格式的SIMPLE算法相比,所发展的紧致方法可以多预测一种静态分岔现象。 展开更多
关键词 紧致差分方法 投影法 静态分岔
原文传递
A Numerical Algorithm for Determination of a Control Parameter in Two-dimensional Parabolic Inverse Problems 被引量:1
8
作者 Akbar Mohebbi 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2015年第1期213-224,共12页
Numerical solution of the parabolic partial differential equations with an unknown parameter play a very important role in engineering applications. In this study we present a high order scheme for determining unknown... Numerical solution of the parabolic partial differential equations with an unknown parameter play a very important role in engineering applications. In this study we present a high order scheme for determining unknown control parameter and unknown solution of two-dimensional parabolic inverse problem with overspe- cialization at a point in the spatial domain. In this approach, a compact fourth-order scheme is used to discretize spatial derivatives of equation and reduces the problem to a system of ordinary differential equations (ODEs). Then we apply a fourth order boundary value method to the solution of resulting system of ODEs. So the proposed method has fourth order of accuracy in both space and time components and is unconditionally stable due to the favorable stability property of boundary value methods. The results of numerical experiments are presented and some comparisons are made with several well-known finite difference schemes in the literature. Also we will investigate the effect of noise in data on the approximate solutions. 展开更多
关键词 compact finite difference scheme boundary value method control parameter parabolic inverseproblem temperature over=specification high accuracy noise
原文传递
求解三维Helmholtz方程的高阶快速数值算法 被引量:2
9
作者 邹静文 李郴良 《桂林电子科技大学学报》 2013年第5期420-424,共5页
针对三维Helmholtz方程Dirichlet边界问题,提出一种高阶快速数值算法。该算法采用高阶有限差分方法离散化,利用FFT方法将离散方程缩小为规模较小的界面线性方程,可用直接法快速有效地求解。基于该方法可构造出解决三维Helmholtz方程的... 针对三维Helmholtz方程Dirichlet边界问题,提出一种高阶快速数值算法。该算法采用高阶有限差分方法离散化,利用FFT方法将离散方程缩小为规模较小的界面线性方程,可用直接法快速有效地求解。基于该方法可构造出解决三维Helmholtz方程的高阶快速数值算法,数值实验验证了算法的准确性和有效性。 展开更多
关键词 三维Helmholtz方程 紧有限差分方法 FFT 界面线性方程
下载PDF
基于非等距网格的紧致差分方法与经典差分方法的比较
10
作者 李珍 张海娥 王涛 《重庆工学院学报(自然科学版)》 2008年第5期163-167,共5页
采用泰勒展式系数匹配的方法构造出了非等距网格系统的紧致差分格式,并分析了其截断误差.与经典差分方法进行比较发现,紧致差分格式的基架要少于同价精度的经典差分格式,同价截断误差的紧致差分格式比经典差分格式计算误差小,非等距网... 采用泰勒展式系数匹配的方法构造出了非等距网格系统的紧致差分格式,并分析了其截断误差.与经典差分方法进行比较发现,紧致差分格式的基架要少于同价精度的经典差分格式,同价截断误差的紧致差分格式比经典差分格式计算误差小,非等距网格下紧致差分格式对网格的依赖性比经典差分格式强,网格对计算精度的影响较大. 展开更多
关键词 紧致有限差分方法 经典差分方法 非等距网格 截断误差
下载PDF
A COMPACT FOURTH-ORDER FINITE DIFFERENCE SCHEME FOR THE IMPROVED BOUSSINESQ EQUATION WITH DAMPING TERMS
11
作者 Fuqiang Lu Zhiyao Song Zhuo Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2016年第5期462-478,共17页
In this paper, a compact finite difference method is presented for solving the initial boundary value problems for the improved Boussinesq equation with damping terms. The fourth-order equation can be transformed into... In this paper, a compact finite difference method is presented for solving the initial boundary value problems for the improved Boussinesq equation with damping terms. The fourth-order equation can be transformed into a first-order ordinary differential system, and then, the classical Pad4 approximation is used to discretize spatial derivative in the non- linear partial differential equations. The resulting coefficient matrix for the semi-discrete scheme is tri-diagonal and can be solved efficiently. In order to maintain the same order of convergence, the classical fourth-order Runge-Kutta method is the preferred method for explicit time integration. Soliton-type solutions are used to evaluate the accuracy of the method, and various numerical experiments are designed to test the different effects of the damping terms. 展开更多
关键词 compact finite difference method hnproved Boussinesq equation Stokesdamping Hydrodynamic damping Runge-Kutta method.
原文传递
求解对流扩散方程的紧致修正方法 被引量:1
12
作者 张昆 杨茉 《工程热物理学报》 EI CAS CSCD 北大核心 2011年第3期459-461,共3页
提出了求解对流扩散方程的紧致修正方法,该方法是在低阶离散格式的源项中,引入紧致修正项,从而构造高阶紧致修正格式,并进行求解。采用紧致修正方法对典型的对流扩散方程进行计算。结果表明,紧致修正方法虽然与二阶经典差分方法建立在... 提出了求解对流扩散方程的紧致修正方法,该方法是在低阶离散格式的源项中,引入紧致修正项,从而构造高阶紧致修正格式,并进行求解。采用紧致修正方法对典型的对流扩散方程进行计算。结果表明,紧致修正方法虽然与二阶经典差分方法建立在相同的结点数上,但紧致修正方法的精度与紧致方法的精度相同,均具有四阶精度。所以紧致修正方法可以在少网格点下得出高精度解。 展开更多
关键词 紧致有限差分格式 紧致修正方法 对流扩散方程
原文传递
High accuracy compact finite difference methods and their applications
13
作者 田振夫 《Journal of Shanghai University(English Edition)》 CAS 2006年第6期558-560,共3页
Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been... Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been discovered that the higher-order accurate method can give reliable and efficient computational results, as well as better resolution of the complex flow fields with multi-scale structures. Compact finite difference schemes, which feature higher-order accuracy and spectral-like resolution with smaller stencils and easier application of boundary conditions, has attracted more and more interest and attention. 展开更多
关键词 computational fluid dynamics CFD incompressible flow convection-diffusion equation Navier-Stokes equations compact finite difference approximation alternating direction implicit method numerical simulation.
下载PDF
求解Black-Scholes方程的精度紧致有限差分格式 被引量:1
14
作者 赵美芝 戴伟忠 晏云 《闽南师范大学学报(自然科学版)》 2017年第1期1-10,共10页
针对单个Black-Scholes方程提出一种具有空间四阶精度的紧致有限差分格式,利用离散能量法分析了其稳定性和收敛性,并通过数值算例结果证实了理论分析.
关键词 BLACK-SCHOLES方程 紧致有限差分格式 离散能量法 稳定性 收敛性
下载PDF
紧致差分格式求解二维非稳态不可压N-S方程 被引量:1
15
作者 王涛 杨丽芳 《燕山大学学报》 CAS 2008年第3期278-282,共5页
采用泰勒展式系数匹配的方法构造基于非等距网格的紧致差分格式并得出了它的截断误差。紧致差分格式能够很好的模拟不同时刻流场的变化情况,网格系统的选择对精度的影响很大,基于非等距网格的紧致差分方法是一种比经典差分方法精度更高... 采用泰勒展式系数匹配的方法构造基于非等距网格的紧致差分格式并得出了它的截断误差。紧致差分格式能够很好的模拟不同时刻流场的变化情况,网格系统的选择对精度的影响很大,基于非等距网格的紧致差分方法是一种比经典差分方法精度更高的求解非稳态纳维斯托克斯方程的有效算法。 展开更多
关键词 紧致有限差分方法 N-S方程 非等距网格 截断误差
下载PDF
二维复值Ginzburg-Landau方程的一个高阶紧致ADI差分格式 被引量:1
16
作者 朱晨怡 王廷春 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第3期341-349,共9页
对二维复值金兹堡朗道(Ginzburg-Landau,GL)方程提出一个基于时间分裂的高阶紧致交替方向隐式有限差分格式。本文通过时间分裂法将GL方程分裂成一个非线性子问题及两个线性子问题,对非线性子问题以及其中一个线性子问题均通过精确积分... 对二维复值金兹堡朗道(Ginzburg-Landau,GL)方程提出一个基于时间分裂的高阶紧致交替方向隐式有限差分格式。本文通过时间分裂法将GL方程分裂成一个非线性子问题及两个线性子问题,对非线性子问题以及其中一个线性子问题均通过精确积分进行计算,并对另一线性子问题构造紧致交替方向隐式差分格式进行数值计算。实际计算中,在每一时间步,利用追赶法求解一族常系数三对角线性代数方程组,从而使得算法既具有较高精度又拥有较快的计算速度。数值实验表明该算法在时间和空间方向分别具有二阶和四阶精度,并模拟了方程的一些动力学行为。 展开更多
关键词 二维复值Ginzburg-Landau方程 时间分裂算法 紧致差分 交替方向隐格式
下载PDF
N-S方程数值模拟方法研究及边界层中相干结构的非线性演化
17
作者 陆昌根 曹卫东 钱建华 《空气动力学学报》 CSCD 北大核心 2007年第3期345-350,共6页
建立了一套三维不可压流动的直接数值模拟方法。该算法在x及y向构造了基于非等间距网格的紧致有限差分格式和非线性项的迎风紧致型格式,在z向采用Fourier谱方法。并研究、提出了三维、非定常流体运动下游边界的无反射出流条件。另外,本... 建立了一套三维不可压流动的直接数值模拟方法。该算法在x及y向构造了基于非等间距网格的紧致有限差分格式和非线性项的迎风紧致型格式,在z向采用Fourier谱方法。并研究、提出了三维、非定常流体运动下游边界的无反射出流条件。另外,本文还构建了多涡结构的初始扰动理论模型,利用直接数值模拟的方法研究了边界层中多涡结构的非线性演化特点。结果表明多涡结构非线性演化中的许多特点,如雷诺应力分布、高剪切层的形成、喷射和扫掠等与壁湍流中相干结构的发展规律和现象十分相似。同时,通过对边界层中多涡结构的非线性演化问题的直接数值模拟,验证了该算法具有计算精度高,稳定性好,收敛速度快,出流边界影响小等优点。 展开更多
关键词 直接数值模拟 非等距差分 紧致有限差分 FOURIER谱方法
下载PDF
广义sine-Gordon方程高精度隐式紧致差分方法
18
作者 耿晓月 刘小华 《计算数学》 CSCD 北大核心 2015年第2期199-212,共14页
本文研究一类二维非线性的广义sine-Gordon(简称SG)方程的有限差分格式.首先构造三层时间的紧致交替方向隐式差分格式,并用能量分析法证明格式具有二阶时间精度和四阶空间精度.然后应用改进的Richardson外推算法将时间精度提高到四阶.最... 本文研究一类二维非线性的广义sine-Gordon(简称SG)方程的有限差分格式.首先构造三层时间的紧致交替方向隐式差分格式,并用能量分析法证明格式具有二阶时间精度和四阶空间精度.然后应用改进的Richardson外推算法将时间精度提高到四阶.最后,数值算例证实改进后的算法在空间和时间上均达到四阶精度. 展开更多
关键词 SG方程 紧致差分格式 交替方向隐格式 外推法 能量分析法
原文传递
非线性椭圆问题的紧致差分格式及瀑布两网格法
19
作者 李明 赵金娥 《重庆师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第3期88-94,共7页
为了讨论来源于科学工程问题的二维非线性椭圆问题的离散格式及其数值解法。首先,将泊松方程的四阶紧致差分格式推广至二维非线性椭圆问题,提出了紧致差分(CFD)格式,基于CFD格式,选取合适的步长,形成粗网格层和细网格层。在粗网格层上,... 为了讨论来源于科学工程问题的二维非线性椭圆问题的离散格式及其数值解法。首先,将泊松方程的四阶紧致差分格式推广至二维非线性椭圆问题,提出了紧致差分(CFD)格式,基于CFD格式,选取合适的步长,形成粗网格层和细网格层。在粗网格层上,使用牛顿法求得对应的非线性方程的高精度数值解;在细网格层上,运用插值算子将粗网格上的数值解进行插值,得到细层上较好的初始值,并再次使用牛顿法进行求解,提出了CFD格式下的瀑布两网格(CTG)法。数值实验表明:提出的CFD格式具有四阶计算精度,CTG法迭代步数少、计算时间短。 展开更多
关键词 非线性椭圆问题 紧致差分格式 瀑布两网格法
原文传递
非均匀网格上求解对流扩散问题的高阶紧致差分方法 被引量:13
20
作者 田芳 田振夫 《宁夏大学学报(自然科学版)》 CAS 北大核心 2009年第3期209-212,共4页
基于非均网格上函数的泰勒级数展开,推导出求解一维对流扩散问题的高阶紧致差分格式.对于离散化得到的代数方程组,采用BiCGStab(2)迭代法求解.数值实验表明,该格式对于扩散占优、对流占优及边界层问题都有很好的适应性,对于数值模拟待... 基于非均网格上函数的泰勒级数展开,推导出求解一维对流扩散问题的高阶紧致差分格式.对于离散化得到的代数方程组,采用BiCGStab(2)迭代法求解.数值实验表明,该格式对于扩散占优、对流占优及边界层问题都有很好的适应性,对于数值模拟待求物理量的大梯度变化具有很高的分辨率,计算结果明显优于传统的均匀网格上的差分格式.在具体的数值模拟中,可根据实际物理量的变化规律,选取适当的网格生成变换函数,合理地调整非均匀网格的疏密分布,从而获得比在含相同结点数的均匀网络系统中更为精确的数值结果. 展开更多
关键词 对流扩散方程 高阶紧致差分方法 非均匀网格 对流占优
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部