A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite differen...A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.展开更多
提出一种基于精细积分法与时域微分求积法相结合的传输线方程的数值求解方法。首先将传输线方程采用基于紧致有限差分法的四阶差分格式进行空间离散,得到关于时间的一阶线性常微分方程组,四阶差分格式对于空间微分有很好的近似精度。然...提出一种基于精细积分法与时域微分求积法相结合的传输线方程的数值求解方法。首先将传输线方程采用基于紧致有限差分法的四阶差分格式进行空间离散,得到关于时间的一阶线性常微分方程组,四阶差分格式对于空间微分有很好的近似精度。然后利用精细积分法与微分求积法对一阶线性常微分方程组进行数值求解。通过理论分析可知,与传统的传输线方程数值求解方法——时域有限差分法(Finite difference time domain,FDTD)相比,所提方法不涉及到状态矩阵求逆运算,保证了数值求解精度,并且其数值稳定性与计算时间、空间步长无关,可采用大步长进行数值计算,能够有效提高计算效率。最后利用仿真实例进行算法验证,结果显示,相比于时域有限差分法,所提方法能够抑制数值振荡,提高了计算精度。展开更多
In this paper, fourth-order compact finite difference schemes are proposed for solving Helmholtz equation with piecewise wave numbers in polar coordinates with axis-symmetric and in some cases that the solution depend...In this paper, fourth-order compact finite difference schemes are proposed for solving Helmholtz equation with piecewise wave numbers in polar coordinates with axis-symmetric and in some cases that the solution depends both of independent variables. The idea of the immersed interface method is applied to deal with the discontinuities in the wave number and certain derivatives of the solution. Numerical experiments are included to confirm the accuracy and efficiency of the proposed method.展开更多
Numerical solution of the parabolic partial differential equations with an unknown parameter play a very important role in engineering applications. In this study we present a high order scheme for determining unknown...Numerical solution of the parabolic partial differential equations with an unknown parameter play a very important role in engineering applications. In this study we present a high order scheme for determining unknown control parameter and unknown solution of two-dimensional parabolic inverse problem with overspe- cialization at a point in the spatial domain. In this approach, a compact fourth-order scheme is used to discretize spatial derivatives of equation and reduces the problem to a system of ordinary differential equations (ODEs). Then we apply a fourth order boundary value method to the solution of resulting system of ODEs. So the proposed method has fourth order of accuracy in both space and time components and is unconditionally stable due to the favorable stability property of boundary value methods. The results of numerical experiments are presented and some comparisons are made with several well-known finite difference schemes in the literature. Also we will investigate the effect of noise in data on the approximate solutions.展开更多
In this paper, a compact finite difference method is presented for solving the initial boundary value problems for the improved Boussinesq equation with damping terms. The fourth-order equation can be transformed into...In this paper, a compact finite difference method is presented for solving the initial boundary value problems for the improved Boussinesq equation with damping terms. The fourth-order equation can be transformed into a first-order ordinary differential system, and then, the classical Pad4 approximation is used to discretize spatial derivative in the non- linear partial differential equations. The resulting coefficient matrix for the semi-discrete scheme is tri-diagonal and can be solved efficiently. In order to maintain the same order of convergence, the classical fourth-order Runge-Kutta method is the preferred method for explicit time integration. Soliton-type solutions are used to evaluate the accuracy of the method, and various numerical experiments are designed to test the different effects of the damping terms.展开更多
Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been...Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been discovered that the higher-order accurate method can give reliable and efficient computational results, as well as better resolution of the complex flow fields with multi-scale structures. Compact finite difference schemes, which feature higher-order accuracy and spectral-like resolution with smaller stencils and easier application of boundary conditions, has attracted more and more interest and attention.展开更多
基金the National Natural Science Foundation of China
文摘A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.
文摘提出一种基于精细积分法与时域微分求积法相结合的传输线方程的数值求解方法。首先将传输线方程采用基于紧致有限差分法的四阶差分格式进行空间离散,得到关于时间的一阶线性常微分方程组,四阶差分格式对于空间微分有很好的近似精度。然后利用精细积分法与微分求积法对一阶线性常微分方程组进行数值求解。通过理论分析可知,与传统的传输线方程数值求解方法——时域有限差分法(Finite difference time domain,FDTD)相比,所提方法不涉及到状态矩阵求逆运算,保证了数值求解精度,并且其数值稳定性与计算时间、空间步长无关,可采用大步长进行数值计算,能够有效提高计算效率。最后利用仿真实例进行算法验证,结果显示,相比于时域有限差分法,所提方法能够抑制数值振荡,提高了计算精度。
文摘In this paper, fourth-order compact finite difference schemes are proposed for solving Helmholtz equation with piecewise wave numbers in polar coordinates with axis-symmetric and in some cases that the solution depends both of independent variables. The idea of the immersed interface method is applied to deal with the discontinuities in the wave number and certain derivatives of the solution. Numerical experiments are included to confirm the accuracy and efficiency of the proposed method.
基金Supported by the Foundation of University of Kashn(Grant No.258499/5)
文摘Numerical solution of the parabolic partial differential equations with an unknown parameter play a very important role in engineering applications. In this study we present a high order scheme for determining unknown control parameter and unknown solution of two-dimensional parabolic inverse problem with overspe- cialization at a point in the spatial domain. In this approach, a compact fourth-order scheme is used to discretize spatial derivatives of equation and reduces the problem to a system of ordinary differential equations (ODEs). Then we apply a fourth order boundary value method to the solution of resulting system of ODEs. So the proposed method has fourth order of accuracy in both space and time components and is unconditionally stable due to the favorable stability property of boundary value methods. The results of numerical experiments are presented and some comparisons are made with several well-known finite difference schemes in the literature. Also we will investigate the effect of noise in data on the approximate solutions.
文摘In this paper, a compact finite difference method is presented for solving the initial boundary value problems for the improved Boussinesq equation with damping terms. The fourth-order equation can be transformed into a first-order ordinary differential system, and then, the classical Pad4 approximation is used to discretize spatial derivative in the non- linear partial differential equations. The resulting coefficient matrix for the semi-discrete scheme is tri-diagonal and can be solved efficiently. In order to maintain the same order of convergence, the classical fourth-order Runge-Kutta method is the preferred method for explicit time integration. Soliton-type solutions are used to evaluate the accuracy of the method, and various numerical experiments are designed to test the different effects of the damping terms.
文摘Numerical simulation of complex flow fields with multi-scale structures is one of the most important and challenging branches of computational fluid dynamics. From linear analysis and numerical experiments it has been discovered that the higher-order accurate method can give reliable and efficient computational results, as well as better resolution of the complex flow fields with multi-scale structures. Compact finite difference schemes, which feature higher-order accuracy and spectral-like resolution with smaller stencils and easier application of boundary conditions, has attracted more and more interest and attention.