The spherical torus(ST)and compact torus(CT)are two kinds of alternative magnetic confinement fusion concepts with compact geometry.The ST is actually a sub-category of tokamak with a low aspect ratio;while the CT is ...The spherical torus(ST)and compact torus(CT)are two kinds of alternative magnetic confinement fusion concepts with compact geometry.The ST is actually a sub-category of tokamak with a low aspect ratio;while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch.The ST and CT have potential advantages for ultimate fusion reactor;while at present they can also provide unique fusion science and technology contributions for mainstream fusion research.However,some critical scientific and technology issues should be extensively investigated.展开更多
As one of the relativistic electron tubes having compact configuration and high efficient output, the relativistic magnetron with direct axial radiation is very attractive in pulsed power and high power microwave fiel...As one of the relativistic electron tubes having compact configuration and high efficient output, the relativistic magnetron with direct axial radiation is very attractive in pulsed power and high power microwave fields for industrial and military applications. In this paper, the experimental investigation of a relativistic magnetron with axial TE11 mode radiation is reported. Under a total length of - 0.3 m, volume of - 0.014 m3, working at an applied voltage of 508 kV and a magnetic field of - 0.31 T, the relativistic magnetron radiates a microwave of 540 MW with the TE11 mode at 2.35 GHz in the axial direction. The power conversion efficiency is 15.0%. After a lot of shots, the detected amplitudes of microwaves are nearly the same. The fluctuations of wave amplitudes are less than 0.3 dB.展开更多
特高压紧凑型输电技术对于压缩输电线路走廊宽度、提高输电线路自然输送功率、降低单位输送容量的工程造价具有重要价值。作为紧凑型技术的重要方法,导线排列方式的优化有利于进一步提高线路输送容量,改善输电线路周围的电磁环境。提出...特高压紧凑型输电技术对于压缩输电线路走廊宽度、提高输电线路自然输送功率、降低单位输送容量的工程造价具有重要价值。作为紧凑型技术的重要方法,导线排列方式的优化有利于进一步提高线路输送容量,改善输电线路周围的电磁环境。提出了一种1 000 k V紧凑型输电线路的导线排列方式优化方法,该方法以提高自然功率和单位截面积自然功率为目标,并考虑工程实际约束,建立多目标不等式约束的非线性优化模型,通过模型求解得到导线优化的初始方案。在初始方案的基础上,采用粒子群优化方法对初始方案的子导线排列进行了非对称优化,对比分析了优化前后导线的电磁环境因素以及线路的电气参数,并利用有限元分析方法对优化排列后的导线表面电场强度进行了仿真验证。展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11325524 and 11261140327)Ministry of Science and Technology of China(Contract No.2013GB112001).
文摘The spherical torus(ST)and compact torus(CT)are two kinds of alternative magnetic confinement fusion concepts with compact geometry.The ST is actually a sub-category of tokamak with a low aspect ratio;while the CT is a toroidal magnetic configuration with a simply-connected geometry including spheromak and field reversed pinch.The ST and CT have potential advantages for ultimate fusion reactor;while at present they can also provide unique fusion science and technology contributions for mainstream fusion research.However,some critical scientific and technology issues should be extensively investigated.
文摘As one of the relativistic electron tubes having compact configuration and high efficient output, the relativistic magnetron with direct axial radiation is very attractive in pulsed power and high power microwave fields for industrial and military applications. In this paper, the experimental investigation of a relativistic magnetron with axial TE11 mode radiation is reported. Under a total length of - 0.3 m, volume of - 0.014 m3, working at an applied voltage of 508 kV and a magnetic field of - 0.31 T, the relativistic magnetron radiates a microwave of 540 MW with the TE11 mode at 2.35 GHz in the axial direction. The power conversion efficiency is 15.0%. After a lot of shots, the detected amplitudes of microwaves are nearly the same. The fluctuations of wave amplitudes are less than 0.3 dB.
文摘特高压紧凑型输电技术对于压缩输电线路走廊宽度、提高输电线路自然输送功率、降低单位输送容量的工程造价具有重要价值。作为紧凑型技术的重要方法,导线排列方式的优化有利于进一步提高线路输送容量,改善输电线路周围的电磁环境。提出了一种1 000 k V紧凑型输电线路的导线排列方式优化方法,该方法以提高自然功率和单位截面积自然功率为目标,并考虑工程实际约束,建立多目标不等式约束的非线性优化模型,通过模型求解得到导线优化的初始方案。在初始方案的基础上,采用粒子群优化方法对初始方案的子导线排列进行了非对称优化,对比分析了优化前后导线的电磁环境因素以及线路的电气参数,并利用有限元分析方法对优化排列后的导线表面电场强度进行了仿真验证。