In this study,we report an analysis of cylinder head vibration signals at a steady engine speed using short-time Fourier transform(STFT).Three popular time-frequency analysis techniques,i.e.,STFT,analytic wavelet tran...In this study,we report an analysis of cylinder head vibration signals at a steady engine speed using short-time Fourier transform(STFT).Three popular time-frequency analysis techniques,i.e.,STFT,analytic wavelet transform(AWT) and S transform(ST),have been examined.AWT and ST are often applied in engine signal analyses.In particular,an AWT expression in terms of the quality factor Q and an analytical relationship between ST and AWT have been derived.The time-frequency resolution of a Gaussian function windowed STFT was studied via numerical simulation.Based on the simulation,the empirical limits for the lowest distinguishable frequency as well as the time and frequency resolutions were determined.These can provide insights for window width selection,spectrogram interpretation and artifact identification.Gaussian function windowed STFTs were applied to some cylinder head vibration signals.The spectrograms of the same signals from ST and AWT were also determined for comparison.The results indicate that the uniform resolution feature of STFT is not necessarily a disadvantage for time-frequency analysis of vibration signals when the engine is in stationary state because it can more accurately localize the frequency components excited by transient excitations without much loss of time resolution.展开更多
The pressure ratio required for a turbocharger centrifugal compressor increases with internal combustion engine power density. High pressure ratio causes a transonic flow field at the impeller inducer. Transonic flow ...The pressure ratio required for a turbocharger centrifugal compressor increases with internal combustion engine power density. High pressure ratio causes a transonic flow field at the impeller inducer. Transonic flow narrows the stable flow range and de-teriorates stage efficiency. In this work, an advanced high pressure ratio transonic compressor was designed. The experimental results show that the maximum pressure ratio of this turbocharger is about 4.2, the maximum efficiency is above 80% and the stable flow range at the designed rotating speed is up to 34%. A turbocharger with this transonic compressor has been applied to some vehicle research actually, and improved power density by 40%.展开更多
基金Project (No. 2011BAE22B05) supported by the National Key Technologies Supporting Program of China during the 12th Five-Year Plan Period
文摘In this study,we report an analysis of cylinder head vibration signals at a steady engine speed using short-time Fourier transform(STFT).Three popular time-frequency analysis techniques,i.e.,STFT,analytic wavelet transform(AWT) and S transform(ST),have been examined.AWT and ST are often applied in engine signal analyses.In particular,an AWT expression in terms of the quality factor Q and an analytical relationship between ST and AWT have been derived.The time-frequency resolution of a Gaussian function windowed STFT was studied via numerical simulation.Based on the simulation,the empirical limits for the lowest distinguishable frequency as well as the time and frequency resolutions were determined.These can provide insights for window width selection,spectrogram interpretation and artifact identification.Gaussian function windowed STFTs were applied to some cylinder head vibration signals.The spectrograms of the same signals from ST and AWT were also determined for comparison.The results indicate that the uniform resolution feature of STFT is not necessarily a disadvantage for time-frequency analysis of vibration signals when the engine is in stationary state because it can more accurately localize the frequency components excited by transient excitations without much loss of time resolution.
基金supported by the National Natural Science Foundation of China (Grant No. 50806040)Specialized Research Fund for the Doc-toral Program of Higher Education) (Grant No. 200800031075)supported by the fund from National Key Laboratory of Diesel Engine Turbocharging Technology
文摘The pressure ratio required for a turbocharger centrifugal compressor increases with internal combustion engine power density. High pressure ratio causes a transonic flow field at the impeller inducer. Transonic flow narrows the stable flow range and de-teriorates stage efficiency. In this work, an advanced high pressure ratio transonic compressor was designed. The experimental results show that the maximum pressure ratio of this turbocharger is about 4.2, the maximum efficiency is above 80% and the stable flow range at the designed rotating speed is up to 34%. A turbocharger with this transonic compressor has been applied to some vehicle research actually, and improved power density by 40%.