为进一步提高光伏发电功率超短期预测的准确度,提出一种基于混沌理论(Chaos)-集合经验模态分解(ensemble empirical mode decomposition,EEMD)-峰值频段划分(peak frequency band division,PFBD)和GA-BP神经网络的光伏发电功率组合预测...为进一步提高光伏发电功率超短期预测的准确度,提出一种基于混沌理论(Chaos)-集合经验模态分解(ensemble empirical mode decomposition,EEMD)-峰值频段划分(peak frequency band division,PFBD)和GA-BP神经网络的光伏发电功率组合预测法。首先,在光伏发电功率序列相空间重构的基础上,采用EEMD和PFBD对隐含混沌特征进行优化提取,以深度挖掘数据隐含波动信息,提取平稳性好、可预测性强的聚合分量;然后,利用GA优化BP神经网络(BPNN)的初始权值与阈值,构建GA-BP神经网络预测模型,进行光伏发电功率单步和三步预测;最后基于实测功率数据进行有效性验证。仿真结果表明:所提预测法通过数据分解重构和GA优化可实现预测准确度的提高,显示出良好预测性能。展开更多
文摘为进一步提高光伏发电功率超短期预测的准确度,提出一种基于混沌理论(Chaos)-集合经验模态分解(ensemble empirical mode decomposition,EEMD)-峰值频段划分(peak frequency band division,PFBD)和GA-BP神经网络的光伏发电功率组合预测法。首先,在光伏发电功率序列相空间重构的基础上,采用EEMD和PFBD对隐含混沌特征进行优化提取,以深度挖掘数据隐含波动信息,提取平稳性好、可预测性强的聚合分量;然后,利用GA优化BP神经网络(BPNN)的初始权值与阈值,构建GA-BP神经网络预测模型,进行光伏发电功率单步和三步预测;最后基于实测功率数据进行有效性验证。仿真结果表明:所提预测法通过数据分解重构和GA优化可实现预测准确度的提高,显示出良好预测性能。