Testing is an integral part of software development.Current fastpaced system developments have rendered traditional testing techniques obsolete.Therefore,automated testing techniques are needed to adapt to such system...Testing is an integral part of software development.Current fastpaced system developments have rendered traditional testing techniques obsolete.Therefore,automated testing techniques are needed to adapt to such system developments speed.Model-based testing(MBT)is a technique that uses system models to generate and execute test cases automatically.It was identified that the test data generation(TDG)in many existing model-based test case generation(MB-TCG)approaches were still manual.An automatic and effective TDG can further reduce testing cost while detecting more faults.This study proposes an automated TDG approach in MB-TCG using the extended finite state machine model(EFSM).The proposed approach integrates MBT with combinatorial testing.The information available in an EFSM model and the boundary value analysis strategy are used to automate the domain input classifications which were done manually by the existing approach.The results showed that the proposed approach was able to detect 6.62 percent more faults than the conventionalMB-TCG but at the same time generated 43 more tests.The proposed approach effectively detects faults,but a further treatment to the generated tests such as test case prioritization should be done to increase the effectiveness and efficiency of testing.展开更多
In this paper, it is supposed that the B&B algorithm finds the first optimal solution after h nodes have been expanded and m active nodes have been created in the state-space tree. Then the lower bound Ω(m+h log ...In this paper, it is supposed that the B&B algorithm finds the first optimal solution after h nodes have been expanded and m active nodes have been created in the state-space tree. Then the lower bound Ω(m+h log h) of the running time for the general sequential B&B algorithm and the lower bound Ω(m/p+h log p) for the general parallel best-first B&B algorithm in PRAM-CREW are proposed, where p is the number of processors available. Moreover, the lower bound Ω(M/p+H+(H/p) log (H/p)) is presented for the parallel algorithms on distributed memory system, where M and H represent total number of the active nodes and that of the expanded nodes processed by p processors, respectively. In addition, a nearly fastest general parallel best-first B&B algorithm is put forward. The parallel algorithm is the fastest one as p = max{hε, r}, where ε = 1/ rootlogh, and r is the largest branch number of the nodes in the state-space tree.展开更多
基金The research was funded by Universiti Teknologi Malaysia(UTM)and the MalaysianMinistry of Higher Education(MOHE)under the Industry-International Incentive Grant Scheme(IIIGS)(Vote Number:Q.J130000.3651.02M67 and Q.J130000.3051.01M86)the Aca-demic Fellowship Scheme(SLAM).
文摘Testing is an integral part of software development.Current fastpaced system developments have rendered traditional testing techniques obsolete.Therefore,automated testing techniques are needed to adapt to such system developments speed.Model-based testing(MBT)is a technique that uses system models to generate and execute test cases automatically.It was identified that the test data generation(TDG)in many existing model-based test case generation(MB-TCG)approaches were still manual.An automatic and effective TDG can further reduce testing cost while detecting more faults.This study proposes an automated TDG approach in MB-TCG using the extended finite state machine model(EFSM).The proposed approach integrates MBT with combinatorial testing.The information available in an EFSM model and the boundary value analysis strategy are used to automate the domain input classifications which were done manually by the existing approach.The results showed that the proposed approach was able to detect 6.62 percent more faults than the conventionalMB-TCG but at the same time generated 43 more tests.The proposed approach effectively detects faults,but a further treatment to the generated tests such as test case prioritization should be done to increase the effectiveness and efficiency of testing.
基金This paper was supported by Ph. D. Foundation of State Education Commission of China.
文摘In this paper, it is supposed that the B&B algorithm finds the first optimal solution after h nodes have been expanded and m active nodes have been created in the state-space tree. Then the lower bound Ω(m+h log h) of the running time for the general sequential B&B algorithm and the lower bound Ω(m/p+h log p) for the general parallel best-first B&B algorithm in PRAM-CREW are proposed, where p is the number of processors available. Moreover, the lower bound Ω(M/p+H+(H/p) log (H/p)) is presented for the parallel algorithms on distributed memory system, where M and H represent total number of the active nodes and that of the expanded nodes processed by p processors, respectively. In addition, a nearly fastest general parallel best-first B&B algorithm is put forward. The parallel algorithm is the fastest one as p = max{hε, r}, where ε = 1/ rootlogh, and r is the largest branch number of the nodes in the state-space tree.