This paper describes the specially designed geometry of a dry-etched large-wedge-angle silica microdisk resonator that enables anomalous dispersion in the 780 nm wavelength regime. This anomalous dispersion occurs nat...This paper describes the specially designed geometry of a dry-etched large-wedge-angle silica microdisk resonator that enables anomalous dispersion in the 780 nm wavelength regime. This anomalous dispersion occurs naturally without the use of a mode-hybridization technique to control the geometrical dispersion. By fabricating a1-μm-thick silica microdisk with a wedge angle as large as 56° and an optical Q-factor larger than 107, we achieve a visible Kerr comb that covers the wavelength interval of 700–897 nm. The wide optical frequency range and the closeness to the clock transition at 698 nm of 87 Sr atoms make our visible comb a potentially useful tool in optical atomic clock applications.展开更多
This paper details the design and simulation of a novel low-loss four-bit reconfigurable bandpass filter that integrates microelectromechanical system(MEMS)switches and comb resonators.A T-shaped reconfigurable resona...This paper details the design and simulation of a novel low-loss four-bit reconfigurable bandpass filter that integrates microelectromechanical system(MEMS)switches and comb resonators.A T-shaped reconfigurable resonator is reconfigured in a'one resonator,multiple MEMS switches'configuration and used to gate the load capacitances of comb resonators so that a multiple-frequency filtering function is realized within the 7-16 GHz frequency range.In addition,the insertion loss of the filter is less than 1.99 dB,the out-of-band rejection is more than 18.30 dB,and the group delay is less than 0.25 ns.On the other hand,the size of this novel filter is only 4.4 mm×2.5 mm×0.4 mm.Our results indicate that this MEMS reconfigurable filter,which can switch 16 central frequency bands through eight switches,achieves a low insertion loss compared to those of traditional MEMS filters.In addition,the advantages of small size are obtained while achieving high integration.展开更多
Micromachined comb-drive electrostatic resonators with folded-cantilever beams were designed and fabricated. A combination of Rayleigh's method and finite-element analysis was used to calculate the resonant frequency...Micromachined comb-drive electrostatic resonators with folded-cantilever beams were designed and fabricated. A combination of Rayleigh's method and finite-element analysis was used to calculate the resonant frequency drift as we adjusted the device geometry and material parameters. Three micromachined lateral resonant resonators with different beam widths were fabricated. Their resonant frequencies were experimentally measured to be 64.5,147.2, and 255.5kHz, respectively, which are in good agreement with the simulated resonant frequency. It is shown that an improved frequency performance could be obtained on the poly 3C-SiC based device structural material systems with high Young's modulus.展开更多
基金National Key R&D Program of China(2016YFA0302500,2017YFA0303703)National Natural Science Foundation of China(NSFC)(61435007,11574144,11621091,61475099)
文摘This paper describes the specially designed geometry of a dry-etched large-wedge-angle silica microdisk resonator that enables anomalous dispersion in the 780 nm wavelength regime. This anomalous dispersion occurs naturally without the use of a mode-hybridization technique to control the geometrical dispersion. By fabricating a1-μm-thick silica microdisk with a wedge angle as large as 56° and an optical Q-factor larger than 107, we achieve a visible Kerr comb that covers the wavelength interval of 700–897 nm. The wide optical frequency range and the closeness to the clock transition at 698 nm of 87 Sr atoms make our visible comb a potentially useful tool in optical atomic clock applications.
基金Project supported by the National Defense Technology Industry Strong Foundation Project of China (Grant No. JCKY2018* * **06)the Information System New items Project (Grant Nos. 2018****26 and 2019****10)the Key Laboratory of Instrumentation Science and Dynamic Measurement for their support
文摘This paper details the design and simulation of a novel low-loss four-bit reconfigurable bandpass filter that integrates microelectromechanical system(MEMS)switches and comb resonators.A T-shaped reconfigurable resonator is reconfigured in a'one resonator,multiple MEMS switches'configuration and used to gate the load capacitances of comb resonators so that a multiple-frequency filtering function is realized within the 7-16 GHz frequency range.In addition,the insertion loss of the filter is less than 1.99 dB,the out-of-band rejection is more than 18.30 dB,and the group delay is less than 0.25 ns.On the other hand,the size of this novel filter is only 4.4 mm×2.5 mm×0.4 mm.Our results indicate that this MEMS reconfigurable filter,which can switch 16 central frequency bands through eight switches,achieves a low insertion loss compared to those of traditional MEMS filters.In addition,the advantages of small size are obtained while achieving high integration.
文摘Micromachined comb-drive electrostatic resonators with folded-cantilever beams were designed and fabricated. A combination of Rayleigh's method and finite-element analysis was used to calculate the resonant frequency drift as we adjusted the device geometry and material parameters. Three micromachined lateral resonant resonators with different beam widths were fabricated. Their resonant frequencies were experimentally measured to be 64.5,147.2, and 255.5kHz, respectively, which are in good agreement with the simulated resonant frequency. It is shown that an improved frequency performance could be obtained on the poly 3C-SiC based device structural material systems with high Young's modulus.