Perovskite solar cells(PSCs)have attracted much attention due to their rapidly increased power conversion efficiencies,however,their inherent poor long-term stability hinders their commercialization.The degradation of...Perovskite solar cells(PSCs)have attracted much attention due to their rapidly increased power conversion efficiencies,however,their inherent poor long-term stability hinders their commercialization.The degradation of PSCs first comes from the degradation of hole transport materials(HTMs).Here,we report the construction of periodicπ-columnar arrays and ionic interfaces over the skeletons by introducing cationic covalent organic frameworks(C-COFs)to the HTM.Periodicπ-columnar arrays can optimize the charge transport ability and energy levels of the hole transport layer and suppress the degradation of HTM,and ionic interfaces over the skeletons can produce stronger electric dipole and electrostatic interactions,as well as higher charge densities.The C-COFs were designed and synthesized via Schiff base reaction by using 1,3,5-triformylphloroglucinol as a neutral knot and dimidium bromide as cationic linker.The neutral COFs(N-COFs)were also synthesized as a reference by using 3,8-diamino-6-phenylphenanthridine as neutral linker.PSCs with cationic COF exhibit the highest efficiency of 23.4%with excellent humidity and thermal stability.To the best of our knowledge,this is the highest efficiency among the meso-structured PSCs fabricated by a sequential process.展开更多
In order to investigate the effect of the thickness on the electrical conductivity of yttriastabilized zirconia(YSZ) film, the nanocrystalline columnar-structured YSZ film with thickness of 0.67-2.52 μm was prepared ...In order to investigate the effect of the thickness on the electrical conductivity of yttriastabilized zirconia(YSZ) film, the nanocrystalline columnar-structured YSZ film with thickness of 0.67-2.52 μm was prepared by magnetron sputtering through controlling the deposition time. All the sputtered films with different thicknesses consist of the main phase of cubic YSZ as well as a small amount of monoclinic YSZ. The thicker films exhibit a typical columnar grain structure based on the fractured cross-sectional SEM observations. The average diameters of columnar grains increase from about 40 nm to 100 nm with the film thickness from 0.67 μm to 2.52 μm according to TEM analysis. The thinnest YSZ film with 0.67 μm thickness shows the highest apparent electrical conductivity in the four films in 400-800 ℃ due to the contribution from the highly conductive film/substrate interfacial region. On the other hand, the real electrical conductivities of YSZ films increase with film thickness from 0.67 μm to 2.52 μm after eliminating the contribution of the film/substrate interface. The increasing film thickness leads to the grain growth as well as the decrement in the volumetric fraction of the resistive columnar grain boundary and a consequent higher real electrical conductivity.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.52203359)Fundamental Research Funds for the Central Universities(No.NS2022092)+5 种基金National Key Research and Development Program of China(No.2019YFA0705400)Natural Science Foundation of Jiangsu Province(No.BK20212008)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nos.MCMS-I-0421K01 and MCMS-I-0422K01)the Fundamental Research Funds for the Central Universities(No.NJ2022002)the National Natural Science Foundation of China(Nos.52073119 and 21774040)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Perovskite solar cells(PSCs)have attracted much attention due to their rapidly increased power conversion efficiencies,however,their inherent poor long-term stability hinders their commercialization.The degradation of PSCs first comes from the degradation of hole transport materials(HTMs).Here,we report the construction of periodicπ-columnar arrays and ionic interfaces over the skeletons by introducing cationic covalent organic frameworks(C-COFs)to the HTM.Periodicπ-columnar arrays can optimize the charge transport ability and energy levels of the hole transport layer and suppress the degradation of HTM,and ionic interfaces over the skeletons can produce stronger electric dipole and electrostatic interactions,as well as higher charge densities.The C-COFs were designed and synthesized via Schiff base reaction by using 1,3,5-triformylphloroglucinol as a neutral knot and dimidium bromide as cationic linker.The neutral COFs(N-COFs)were also synthesized as a reference by using 3,8-diamino-6-phenylphenanthridine as neutral linker.PSCs with cationic COF exhibit the highest efficiency of 23.4%with excellent humidity and thermal stability.To the best of our knowledge,this is the highest efficiency among the meso-structured PSCs fabricated by a sequential process.
基金Funded by the National Natural Science Foundation of China(51462018)
文摘In order to investigate the effect of the thickness on the electrical conductivity of yttriastabilized zirconia(YSZ) film, the nanocrystalline columnar-structured YSZ film with thickness of 0.67-2.52 μm was prepared by magnetron sputtering through controlling the deposition time. All the sputtered films with different thicknesses consist of the main phase of cubic YSZ as well as a small amount of monoclinic YSZ. The thicker films exhibit a typical columnar grain structure based on the fractured cross-sectional SEM observations. The average diameters of columnar grains increase from about 40 nm to 100 nm with the film thickness from 0.67 μm to 2.52 μm according to TEM analysis. The thinnest YSZ film with 0.67 μm thickness shows the highest apparent electrical conductivity in the four films in 400-800 ℃ due to the contribution from the highly conductive film/substrate interfacial region. On the other hand, the real electrical conductivities of YSZ films increase with film thickness from 0.67 μm to 2.52 μm after eliminating the contribution of the film/substrate interface. The increasing film thickness leads to the grain growth as well as the decrement in the volumetric fraction of the resistive columnar grain boundary and a consequent higher real electrical conductivity.