A color visualization-based image processing method is developed in this paper to quantify the concentration evolution of the Brilliant Blue FCF transport through a two-dimensional homogeneous porous medium. A series ...A color visualization-based image processing method is developed in this paper to quantify the concentration evolution of the Brilliant Blue FCF transport through a two-dimensional homogeneous porous medium. A series of images are recorded at known time intervals, then the spatial distribution is estimated using a calibration curve, linking the gray pixel value to the solute concentration. Using a multi-dimensional concentration distribution map extraction technique the longitudinal and transverse concentration distributions could be observed with the physical model. The image-processed concentrations are then compared directly with the measured concentrations sampled at the outlet end. The tracer breakthrough curves sampled at multiple points along the central line of the medium are also compared with the solutions from the standard advection–dispersion equation model. It is shown that the non-invasive image processing method may be used to map the spatiotemporal evolution of a solute's concentration without disturbing the flow or the transport dynamics, although the measured solute breakthrough curves feature some non-Fickian dynamics that cannot be efficiently captured by the standard transport model.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41772250,41602256)
文摘A color visualization-based image processing method is developed in this paper to quantify the concentration evolution of the Brilliant Blue FCF transport through a two-dimensional homogeneous porous medium. A series of images are recorded at known time intervals, then the spatial distribution is estimated using a calibration curve, linking the gray pixel value to the solute concentration. Using a multi-dimensional concentration distribution map extraction technique the longitudinal and transverse concentration distributions could be observed with the physical model. The image-processed concentrations are then compared directly with the measured concentrations sampled at the outlet end. The tracer breakthrough curves sampled at multiple points along the central line of the medium are also compared with the solutions from the standard advection–dispersion equation model. It is shown that the non-invasive image processing method may be used to map the spatiotemporal evolution of a solute's concentration without disturbing the flow or the transport dynamics, although the measured solute breakthrough curves feature some non-Fickian dynamics that cannot be efficiently captured by the standard transport model.