Leaf functional traits are adaptations that enable plants to live under different environmental conditions. This study aims to evaluate the differences in leaf functional traits between red and green leaves of two eve...Leaf functional traits are adaptations that enable plants to live under different environmental conditions. This study aims to evaluate the differences in leaf functional traits between red and green leaves of two evergreen shrubs Photinia × fraseri and Osrnanthus fragrans. Specific areas of red leaves are higher than that of green leaves in both species. Thus, the material investment per unit area and per lamina of red leaves is significantly lower than that of green leaves, implying an utmost effort of red leaves to increase light capture and use efficiency because of their low leafchlorophyll concentration. The higher petiole length of green leaves compared with that of red leaves indicates that adult green leaves may have large fractional biomass allocation to support the lamina structures in capturing light with maximum efficiency and obtaining a high growth rate. The high range of the phenotypic plasticity of leaf size, leaf thickness, single-leaf wet and dry weights, and leaf moisture of green leaves may be beneficial in achieving efficient control of water loss and nutrient deprivation. The high range of phenotypic plasticity of leaf chlorophyll concentration of red leaves may be advantageous in increasing resource (especially light) capture anduse efficiency because this leaf type is juvenile in the growth stage and has low leaf-chlorophyll concentration.展开更多
This paper was to develop a model for simulating the leaf color changes in rice (Oryza sativa L.) based on RGB (red, green, and blue) values. Based on rice experiment data with different cultivars and nitrogen (N...This paper was to develop a model for simulating the leaf color changes in rice (Oryza sativa L.) based on RGB (red, green, and blue) values. Based on rice experiment data with different cultivars and nitrogen (N) rates, the time-course RGB values of each leaf on main stem were collected during the growth period in rice, and a model for simulating the dynamics of leaf color in rice was then developed using quantitative modeling technology. The results showed that the RGB values of leaf color gradually decreased from the initial values (light green) to the steady values (green) during the first stage, remained the steady values (green) during the second stage, then gradually increased to the final values (from green to yellow) during the third stage. The decreasing linear functions, constant functions and increasing linear functions were used to simulate the changes in RGB values of leaf color at the first, second and third stages with growing degree days (GDD), respectively; two cultivar parameters, MatRGB (leaf color matrix) and AR (a vector composed of the ratio of the cumulative GDD of each stage during color change process of leaf n to that during leaf n drawn under adequate N status), were introduced to quantify the genetic characters in RGB values of leaf color and in durations of different stages during leaf color change, respectively; FN (N impact factor) was used to quantify the effects of N levels on RGB values of leaf color and on durations of different stages during leaf color change; linear functions were applied to simulate the changes in leaf color along the leaf midvein direction during leaf development process. Validation of the models with the independent experiment dataset exhibited that the root mean square errors (RMSE) between the observed and simulated RGB values were among 8 to 13, the relative RMSE (RRMSE) were among 8 to 10%, the mean absolute differences (da) were among 3.85 to 6.90, and the ratio of da to the mean observation valu展开更多
A light brown spotted-leaf mutant of rice was isolated from an ethane methyl sulfonate (EMS)- induced IR64 mutant bank. The mutant, designated as Ibsll (light brown spotted-leaf 1), displayed light brown spot in t...A light brown spotted-leaf mutant of rice was isolated from an ethane methyl sulfonate (EMS)- induced IR64 mutant bank. The mutant, designated as Ibsll (light brown spotted-leaf 1), displayed light brown spot in the whole growth period from the first leaf to the flag leaf under natural summer field conditions. Agronomic traits including plant height, growth duration, number of filled grains per panicle, seed-setting rate and 1000-grain weight of the mutant were significantly affected. Genetic analysis showed that the mutation was controlled by a single recessive gene, tentatively named Ibsll(t), which was mapped to the short arm of chromosome 6. By developing simple sequence repeat (SSR) markers, the gene was finally delimited to an interval of 130 kb between markers RM586 and RM588. The Ibsll(t) gene is likely a novel rice spotted-leaf gene since no other similar genes have been identified near the chromosomal region. The genetic data and recombination populations provided will facilitate further fine-mapping and cloning of the gene.展开更多
Reasons for the color change of E.pulcherrima were studied with physiological and biochemical paraments such as: chlorophyll,carotenoids,anthocyanin,Phenylalanine ammonia-lyase (PAL),pH of cell sap in leaves and solub...Reasons for the color change of E.pulcherrima were studied with physiological and biochemical paraments such as: chlorophyll,carotenoids,anthocyanin,Phenylalanine ammonia-lyase (PAL),pH of cell sap in leaves and soluble sugar content etc.The results showed that during the period of the leaf color transmittion of E.pulcherrima,the contents of plastid pigment,soluble sugar and pH of cells sap in leaves showed a high-low-high dynamic change,while the contents of anthocyanin and PAL activity showed the low-high...展开更多
基金financially supported by the National Natural Science Foundation of China(31300343)Natural Science Foundation of Jiangsu Province,China(BK20130500)Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment
文摘Leaf functional traits are adaptations that enable plants to live under different environmental conditions. This study aims to evaluate the differences in leaf functional traits between red and green leaves of two evergreen shrubs Photinia × fraseri and Osrnanthus fragrans. Specific areas of red leaves are higher than that of green leaves in both species. Thus, the material investment per unit area and per lamina of red leaves is significantly lower than that of green leaves, implying an utmost effort of red leaves to increase light capture and use efficiency because of their low leafchlorophyll concentration. The higher petiole length of green leaves compared with that of red leaves indicates that adult green leaves may have large fractional biomass allocation to support the lamina structures in capturing light with maximum efficiency and obtaining a high growth rate. The high range of the phenotypic plasticity of leaf size, leaf thickness, single-leaf wet and dry weights, and leaf moisture of green leaves may be beneficial in achieving efficient control of water loss and nutrient deprivation. The high range of phenotypic plasticity of leaf chlorophyll concentration of red leaves may be advantageous in increasing resource (especially light) capture anduse efficiency because this leaf type is juvenile in the growth stage and has low leaf-chlorophyll concentration.
基金the National High-Tech R&D Program of China(2013AA100404,2012AA101306-2)the Priority Academic Program Development of Jiangsu Higher Education Institutions of China(PAPD)
文摘This paper was to develop a model for simulating the leaf color changes in rice (Oryza sativa L.) based on RGB (red, green, and blue) values. Based on rice experiment data with different cultivars and nitrogen (N) rates, the time-course RGB values of each leaf on main stem were collected during the growth period in rice, and a model for simulating the dynamics of leaf color in rice was then developed using quantitative modeling technology. The results showed that the RGB values of leaf color gradually decreased from the initial values (light green) to the steady values (green) during the first stage, remained the steady values (green) during the second stage, then gradually increased to the final values (from green to yellow) during the third stage. The decreasing linear functions, constant functions and increasing linear functions were used to simulate the changes in RGB values of leaf color at the first, second and third stages with growing degree days (GDD), respectively; two cultivar parameters, MatRGB (leaf color matrix) and AR (a vector composed of the ratio of the cumulative GDD of each stage during color change process of leaf n to that during leaf n drawn under adequate N status), were introduced to quantify the genetic characters in RGB values of leaf color and in durations of different stages during leaf color change, respectively; FN (N impact factor) was used to quantify the effects of N levels on RGB values of leaf color and on durations of different stages during leaf color change; linear functions were applied to simulate the changes in leaf color along the leaf midvein direction during leaf development process. Validation of the models with the independent experiment dataset exhibited that the root mean square errors (RMSE) between the observed and simulated RGB values were among 8 to 13, the relative RMSE (RRMSE) were among 8 to 10%, the mean absolute differences (da) were among 3.85 to 6.90, and the ratio of da to the mean observation valu
基金supported by the State Key Laboratory of Rice Biology (Grant No. ZZKT200801)the National High Technology Research and Development Program of China (Grant No. 2011AA10A101)Central Public Interest Research Institute Special Fund in China (Grant No. 2009RG001-2)
文摘A light brown spotted-leaf mutant of rice was isolated from an ethane methyl sulfonate (EMS)- induced IR64 mutant bank. The mutant, designated as Ibsll (light brown spotted-leaf 1), displayed light brown spot in the whole growth period from the first leaf to the flag leaf under natural summer field conditions. Agronomic traits including plant height, growth duration, number of filled grains per panicle, seed-setting rate and 1000-grain weight of the mutant were significantly affected. Genetic analysis showed that the mutation was controlled by a single recessive gene, tentatively named Ibsll(t), which was mapped to the short arm of chromosome 6. By developing simple sequence repeat (SSR) markers, the gene was finally delimited to an interval of 130 kb between markers RM586 and RM588. The Ibsll(t) gene is likely a novel rice spotted-leaf gene since no other similar genes have been identified near the chromosomal region. The genetic data and recombination populations provided will facilitate further fine-mapping and cloning of the gene.
文摘Reasons for the color change of E.pulcherrima were studied with physiological and biochemical paraments such as: chlorophyll,carotenoids,anthocyanin,Phenylalanine ammonia-lyase (PAL),pH of cell sap in leaves and soluble sugar content etc.The results showed that during the period of the leaf color transmittion of E.pulcherrima,the contents of plastid pigment,soluble sugar and pH of cells sap in leaves showed a high-low-high dynamic change,while the contents of anthocyanin and PAL activity showed the low-high...