期刊文献+
共找到256篇文章
< 1 2 13 >
每页显示 20 50 100
Hybrid artificial bee colony algorithm with variable neighborhood search and memory mechanism 被引量:54
1
作者 FAN Chengli FU Qiang +1 位作者 LONG Guangzheng XING Qinghua 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期405-414,共10页
Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencie... Artificial bee colony(ABC) is one of the most popular swarm intelligence optimization algorithms which have been widely used in numerical optimization and engineering applications. However, there are still deficiencies in ABC regarding its local search ability and global search efficiency. Aiming at these deficiencies,an ABC variant named hybrid ABC(HABC) algorithm is proposed.Firstly, the variable neighborhood search factor is added to the solution search equation, which can enhance the local search ability and increase the population diversity. Secondly, inspired by the neuroscience investigation of real honeybees, the memory mechanism is put forward, which assumes the artificial bees can remember their past successful experiences and further guide the subsequent foraging behavior. The proposed memory mechanism is used to improve the global search efficiency. Finally, the results of comparison on a set of ten benchmark functions demonstrate the superiority of HABC. 展开更多
关键词 artificial bee colony(abc) hybrid artificial bee colony(Habc) variable neighborhood search factor memory mechanism
下载PDF
A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems:Applications and Trends 被引量:33
2
作者 Jun Tang Gang Liu Qingtao Pan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第10期1627-1643,共17页
Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In th... Swarm intelligence algorithms are a subset of the artificial intelligence(AI)field,which is increasing popularity in resolving different optimization problems and has been widely utilized in various applications.In the past decades,numerous swarm intelligence algorithms have been developed,including ant colony optimization(ACO),particle swarm optimization(PSO),artificial fish swarm(AFS),bacterial foraging optimization(BFO),and artificial bee colony(ABC).This review tries to review the most representative swarm intelligence algorithms in chronological order by highlighting the functions and strengths from 127 research literatures.It provides an overview of the various swarm intelligence algorithms and their advanced developments,and briefly provides the description of their successful applications in optimization problems of engineering fields.Finally,opinions and perspectives on the trends and prospects in this relatively new research domain are represented to support future developments. 展开更多
关键词 Ant colony optimization(ACO) artificial bee colony(abc) artificial fish swarm(AFS) bacterial foraging optimization(BFO) optimization particle swarm optimization(PSO) swarm intelligence
下载PDF
Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data 被引量:18
3
作者 Navid Kardani Annan Zhou +1 位作者 Majidreza Nazem Shui-Long Shen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第1期188-201,共14页
Slope failures lead to catastrophic consequences in numerous countries and thus the stability assessment for slopes is of high interest in geotechnical and geological engineering researches.A hybrid stacking ensemble ... Slope failures lead to catastrophic consequences in numerous countries and thus the stability assessment for slopes is of high interest in geotechnical and geological engineering researches.A hybrid stacking ensemble approach is proposed in this study for enhancing the prediction of slope stability.In the hybrid stacking ensemble approach,we used an artificial bee colony(ABC)algorithm to find out the best combination of base classifiers(level 0)and determined a suitable meta-classifier(level 1)from a pool of 11 individual optimized machine learning(OML)algorithms.Finite element analysis(FEA)was conducted in order to form the synthetic database for the training stage(150 cases)of the proposed model while 107 real field slope cases were used for the testing stage.The results by the hybrid stacking ensemble approach were then compared with that obtained by the 11 individual OML methods using confusion matrix,F1-score,and area under the curve,i.e.AUC-score.The comparisons showed that a significant improvement in the prediction ability of slope stability has been achieved by the hybrid stacking ensemble(AUC?90.4%),which is 7%higher than the best of the 11 individual OML methods(AUC?82.9%).Then,a further comparison was undertaken between the hybrid stacking ensemble method and basic ensemble classifier on slope stability prediction.The results showed a prominent performance of the hybrid stacking ensemble method over the basic ensemble method.Finally,the importance of the variables for slope stability was studied using linear vector quantization(LVQ)method. 展开更多
关键词 Slope stability Machine learning(ML) Stacking ensemble Variable importance Artificial bee colony(abc)
下载PDF
Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm 被引量:8
4
作者 Haidong Xu Mingyan Jiang Kun Xu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第2期388-396,共9页
The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the proble... The artificial bee colony (ABC) algorithm is a com- petitive stochastic population-based optimization algorithm. How- ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in- sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estima- tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench- mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen- tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments. 展开更多
关键词 artificial bee colony(abc) algorithm Archimedean copula estimation of distribution algorithm(ACEDA) ACEDA based on artificial be
下载PDF
An Improved Lung Cancer Segmentation Based on Nature-Inspired Optimization Approaches
5
作者 Shazia Shamas Surya Narayan Panda +4 位作者 Ishu Sharma Kalpna Guleria Aman Singh Ahmad Ali AlZubi Mallak Ahmad AlZubi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1051-1075,共25页
The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical image... The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of me 展开更多
关键词 LESION lung cancer segmentation medical imaging META-HEURISTIC Artificial Bee colony(abc) Cuckoo Search Algorithm(CSA) Particle Swarm Optimization(PSO) Firefly Algorithm(FFA) SEGMENTATION
下载PDF
An evolutionary adaptive neuro-fuzzy inference system for estimating field penetration index of tunnel boring machine in rock mass 被引量:3
6
作者 Maryam Parsajoo Ahmed Salih Mohammed +2 位作者 Saffet Yagiz Danial Jahed Armaghani Manoj Khandelwal 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第6期1290-1299,共10页
Field penetration index(FPI) is one of the representative key parameters to examine the tunnel boring machine(TBM) performance.Lack of accurate FPI prediction can be responsible for numerous disastrous incidents assoc... Field penetration index(FPI) is one of the representative key parameters to examine the tunnel boring machine(TBM) performance.Lack of accurate FPI prediction can be responsible for numerous disastrous incidents associated with rock mechanics and engineering.This study aims to predict TBM performance(i.e.FPI) by an efficient and improved adaptive neuro-fuzzy inference system(ANFIS) model.This was done using an evolutionary algorithm,i.e.artificial bee colony(ABC) algorithm mixed with the ANFIS model.The role of ABC algorithm in this system is to find the optimum membership functions(MFs) of ANFIS model to achieve a higher degree of accuracy.The procedure and modeling were conducted on a tunnelling database comprising of more than 150 data samples where brittleness index(BI),fracture spacing,α angle between the plane of weakness and the TBM driven direction,and field single cutter load were assigned as model inputs to approximate FPI values.According to the results obtained by performance indices,the proposed ANFISABC model was able to receive the highest accuracy level in predicting FPI values compared with ANFIS model.In terms of coefficient of determination(R^(2)),the values of 0.951 and 0.901 were obtained for training and testing stages of the proposed ANFISABC model,respectively,which confirm its power and capability in solving TBM performance problem.The proposed model can be used in the other areas of rock mechanics and underground space technologies with similar conditions. 展开更多
关键词 Tunnel boring machine(TBM) Field penetration index(FPI) Neuro-fuzzy technique Evolutionary computation Artificial bee colony(abc)
下载PDF
On the application of artificial bee colony (ABC) algorithm for optimization of well placements in fractured reservoirs;efficiency comparison with the particle swarm optimization (PSO) methodology 被引量:2
7
作者 Behzad Nozohour-leilabady Babak Fazelabdolabadi 《Petroleum》 2016年第1期79-89,共11页
The application of a recent optimization technique,the artificial bee colony(ABC),was investigated in the context of finding the optimal well locations.The ABC performance was compared with the corresponding results f... The application of a recent optimization technique,the artificial bee colony(ABC),was investigated in the context of finding the optimal well locations.The ABC performance was compared with the corresponding results from the particle swarm optimization(PSO)algorithm,under essentially similar conditions.Treatment of out-of-boundary solution vectors was accomplished via the Periodic boundary condition(PBC),which presumably accelerates convergence towards the global optimum.Stochastic searches were initiated from several random staring points,to minimize starting-point dependency in the established results.The optimizations were aimed at maximizing the Net Present Value(NPV)objective function over the considered oilfield production durations.To deal with the issue of reservoir heterogeneity,random permeability was applied via normal/uniform distribution functions.In addition,the issue of increased number of optimization parameters was address,by considering scenarios with multiple injector and producer wells,and cases with deviated wells in a real reservoir model.The typical results prove ABC to excel PSO(in the cases studied)after relatively short optimization cycles,indicating the great premise of ABC methodology to be used for well-optimization purposes. 展开更多
关键词 Artificial bee colony(abc) Particle swarm optimization(PSO) Well placement
原文传递
Weapon-target assignment in unreliable peer-to-peer architecture based on adapted artificial bee colony algorithm 被引量:1
8
作者 Xiaolong LIU Jinchao LIANG +2 位作者 De-Yu LIU Riqing CHEN Shyan-Ming YUAN 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第1期23-31,共9页
It is of great significance for headquarters in warfare to address the weapon-target assignment(WTA)problem with distributed computing nodes to attack targets simultaneously from different weapon units.However,the com... It is of great significance for headquarters in warfare to address the weapon-target assignment(WTA)problem with distributed computing nodes to attack targets simultaneously from different weapon units.However,the computing nodes on the battlefield are vulnerable to be attacked and the communication environment is usually unreliable.To solve the WTA problems in unreliable environments,this paper proposes a scheme based on decentralized peer-to-peer architecture and adapted artificial bee colony(ABC)optimization algorithm.In the decentralized architecture,the peer computing node is distributed to each weapon units and the packet loss rate is used to simulate the unreliable communication environment.The decisions made in each peer node will be merged into the decision set to carry out the optimal decision in the decentralized system by adapted ABC algorithm.The experimental results demonstrate that the decentralized peer-to-peer architecture perform an extraordinary role in the unreliable communication environment.The proposed scheme preforms outstanding results of enemy residual value(ERV)with the packet loss rate in the range from 0 to 0.9. 展开更多
关键词 weapon-target assignment(WTA) PEER-TO-PEER heuristic algorithm artificial bee colony(abc)
原文传递
Application of hybrid support vector regression artificial bee colony for prediction of MMP in CO2-EOR process 被引量:1
9
作者 Menad Nait Amar Noureddine Zeraibi 《Petroleum》 CSCD 2020年第4期415-422,共8页
Minimum miscibility pressure(MMP)is a key parameter in the successful design of miscible gases injection such as CO2 flooding for enhanced oil recovery process(EOR).MMP is generally determined through experimental tes... Minimum miscibility pressure(MMP)is a key parameter in the successful design of miscible gases injection such as CO2 flooding for enhanced oil recovery process(EOR).MMP is generally determined through experimental tests such as slim tube and rising bubble apparatus(RBA).As these tests are time-consuming and their cost is very expensive,several correlations have been developed.However,and although the simplicity of these correlations,they suffer from inaccuracies and bad generalization due to the limitation of their ranges of application.This paper aims to establish a global model to predict MMP in both pure and impure CO2-crude oil in EOR process by combining support vector regression(SVR)with artificial bee colony(ABC).ABC is used to find best SVR hyper-parameters.201 data collected from authenticated published literature and covering a wide range of variables are considered to develop SVR-ABC pure/impure CO2-crude oil MMP model with following inputs:reservoir temperature(TR),critical temperature of the injection gas(Tc),molecular weight of pentane plus fraction of crude oil(MWC5+)and the ratio of volatile components to intermediate components in crude oil(xvol/xint).Statistical indicators and graphical error analyses show that SVR-ABC MMP model yields excellent results with a low mean absolute percentage error(3.24%)and root mean square error(0.79)and a high coefficient of determination(0.9868).Furthermore,the results reveal that SVR-ABC outperforms either ordinary SVR with trial and error approach or all existing methods considered in this work in the prediction of pure and impure CO2-crude oil MMP.Finally,the Leverage approach(Williams plot)is done to investigate the realm of prediction capability of the new model and to detect any probable erroneous data points. 展开更多
关键词 CO2-EOR process CO2-Crude oil minimum miscibility pressure Support vector regression(SVR) Artificial bee colony(abc)
原文传递
Chaotic artificial bee colony approach to step planning of maintaining balance for quadruped robot
10
作者 Qinan Luo Haibin Duan 《International Journal of Intelligent Computing and Cybernetics》 EI 2014年第2期175-191,共17页
Purpose–Artificial bee colony(ABC)algorithm is a relatively new optimization method inspired by the herd behavior of honey bees,which shows quite intelligence.The purpose of this paper is to propose an improved ABC o... Purpose–Artificial bee colony(ABC)algorithm is a relatively new optimization method inspired by the herd behavior of honey bees,which shows quite intelligence.The purpose of this paper is to propose an improved ABC optimization algorithm based on chaos theory for solving the push recovery problem of a quadruped robot,which can tune the controller parameters based on its search mechanism.ADAMS simulation environment is adopted to implement the proposed scheme for the quadruped robot.Design/methodology/approach–Maintaining balance is a rather complicated global optimum problem for a quadruped robot which is about seeking a foot contact point prevents itself from falling down.To ensure the stability of the intelligent robot control system,the intelligent optimization method is employed.The proposed chaotic artificial bee colony(CABC)algorithm is based on basic ABC,and a chaotic mechanism is used to help the algorithm to jump out of the local optimum as well as finding the optimal parameters.The implementation procedure of our proposed chaotic ABC approach is described in detail.Findings–The proposed CABC method is applied to a quadruped robot in ADAMS simulator.Using the CABC to implement,the quadruped robot can work smoothly under the interference.A comparison among the basic ABC and CABC is made.Experimental results verify a better trajectory tracking response can be achieved by the proposed CABC method after control parameters training.Practical implications–The proposed CABC algorithm can be easily applied to practice and can steer the robot during walking,which will considerably increase the autonomy of the robot.Originality/value–The proposed CABC approach is interesting for the optimization of a control scheme for quadruped robot.A parameter training methodology,using the presented intelligent algorithm is proposed to increase the learning capability.The experimental results verify the system stabilization,favorable performance and no chattering phenomena can be achieved by using the proposed CABC a 展开更多
关键词 Optimal control ROBOTICS CHAOTIC Step planning Artificial bee colony(abc) Quadruped robot
原文传递
基于boltzmann选择策略的人工蜂群算法 被引量:60
11
作者 丁海军 冯庆娴 《计算机工程与应用》 CSCD 北大核心 2009年第31期53-55,共3页
人工蜂群算法(ABC)是一种基于蜜蜂行为的优化算法。基于Boltzmann选择机制提出了一种改进的人工蜂群算法(BABC)用来优化多变量函数。BABC算法使初始群体均匀化;采用Boltzmann选择机制来代替轮盘赌以防止算法过早收敛。经过实验证明,该... 人工蜂群算法(ABC)是一种基于蜜蜂行为的优化算法。基于Boltzmann选择机制提出了一种改进的人工蜂群算法(BABC)用来优化多变量函数。BABC算法使初始群体均匀化;采用Boltzmann选择机制来代替轮盘赌以防止算法过早收敛。经过实验证明,该算法具有全局搜索能力好,收敛速度快,参数设置少等优点。 展开更多
关键词 人工蜂群算法(abc) 群集智能 进化计算 函数优化
下载PDF
人工蜂群算法研究综述 被引量:58
12
作者 何尧 刘建华 杨荣华 《计算机应用研究》 CSCD 北大核心 2018年第5期1281-1286,共6页
介绍了2013年以来国内外蜂群算法的研究成果,包括加快收敛、提高开采能力、提高算法性能方面的改进;针对约束优化、平行化运行、多目标寻优等多方面的研究,以及人工蜂群算法在神经网络、无线传感网、决策调度、图像信号处理等多个领域... 介绍了2013年以来国内外蜂群算法的研究成果,包括加快收敛、提高开采能力、提高算法性能方面的改进;针对约束优化、平行化运行、多目标寻优等多方面的研究,以及人工蜂群算法在神经网络、无线传感网、决策调度、图像信号处理等多个领域的研究现状,并指出人工蜂群算法有待进一步解决的问题及未来的研究方向。 展开更多
关键词 人工蜂群算法 群智能 多目标优化 约束优化
下载PDF
基于人工蜂群算法的支持向量机参数优化及应用 被引量:52
13
作者 于明 艾月乔 《光电子.激光》 EI CAS CSCD 北大核心 2012年第2期374-378,共5页
为了解决常用的支持向量机(SVM)参数优化方法在寻优过程不同程度的陷入局部最优解的问题,提出一种基于人工蜂群(ABC)算法的SVM参数优化方法。将SVM的惩罚因子和核函数参数作为食物源位置,分类正确率作为适应度,利用ABC算法寻找适应度最... 为了解决常用的支持向量机(SVM)参数优化方法在寻优过程不同程度的陷入局部最优解的问题,提出一种基于人工蜂群(ABC)算法的SVM参数优化方法。将SVM的惩罚因子和核函数参数作为食物源位置,分类正确率作为适应度,利用ABC算法寻找适应度最高的食物源位置。利用4个标准数据集,将其与遗传(GA)算法、蚁群(ACO)算法、标准粒子群(PSO)算法优化的SVM进行性能比较,结果表明,本文方法能克服局部最优解,获得更高的分类正确率,并在小数目分类问题上有效降低运行时间。将本文方法运用到计算机笔迹鉴别,对提取的笔迹特征进行分类,与GA算法、ACO算法、PSO算法优化的SVM相比,得到了更高的分类正确率。 展开更多
关键词 人工蜂群(abc)算法 支持向量机(SVM) 参数优化 优化算法
原文传递
改进蜂群算法在平面度误差评定中的应用 被引量:50
14
作者 罗钧 王强 付丽 《光学精密工程》 EI CAS CSCD 北大核心 2012年第2期422-430,共9页
为了准确快速评定平面度误差,提出将改进人工蜂群(MABC)算法用于平面度误差最小区域的评定。介绍了评定平面度误差的最小包容区域法及判别准则,并给出符合最小区域条件的平面度误差评定数学模型。叙述了MABC算法,该算法在基本人工蜂群算... 为了准确快速评定平面度误差,提出将改进人工蜂群(MABC)算法用于平面度误差最小区域的评定。介绍了评定平面度误差的最小包容区域法及判别准则,并给出符合最小区域条件的平面度误差评定数学模型。叙述了MABC算法,该算法在基本人工蜂群算法(ABC)模型的基础上引入两个牵引蜂和禁忌搜索策略。阐述了算法的实现步骤,通过分析选用两个经典测试函数验证了MABC算法的有效性。最后,应用MABC算法对平面度误差进行评定,其计算结果符合最小条件。对一组测量数据的评定显示,MABC算法经过0.436s可找到最优平面,比ABC算法节省0.411s,其计算结果比最小二乘法和遗传算法的评定结果分别小18.03μm和6.13μm。对由三坐标机测得的5组实例同样显示,MABC算法的计算精度比遗传算法和粒子群算法更有优势,最大相差0.9μm。实验结果表明,MABC算法在优化效率、求解质量和稳定性上优于ABC算法,计算精度优于最小二乘法、遗传算法和粒子群算法,适用于形位误差测量仪器及三坐标测量机。 展开更多
关键词 平面度误差 人工蜂群算法 最小区域评定 误差评定
下载PDF
基于改进人工蜂群算法的K均值聚类算法 被引量:50
15
作者 喻金平 郑杰 梅宏标 《计算机应用》 CSCD 北大核心 2014年第4期1065-1069,1088,共6页
针对K均值聚类(KMC)算法全局搜索能力差、初始聚类中心选择敏感,以及原始人工蜂群(ABC)算法的初始化随机性、易早熟、后期收敛速度慢等问题,提出了一种改进人工蜂群算法(IABC)。该算法利用最大最小距离积方法初始化蜂群,构造出适应KMC... 针对K均值聚类(KMC)算法全局搜索能力差、初始聚类中心选择敏感,以及原始人工蜂群(ABC)算法的初始化随机性、易早熟、后期收敛速度慢等问题,提出了一种改进人工蜂群算法(IABC)。该算法利用最大最小距离积方法初始化蜂群,构造出适应KMC算法的适应度函数以及一种基于全局引导的位置更新公式以提高迭代寻优过程的效率。将改进的人工蜂群算法与KMC算法结合提出IABC-Kmeans算法以改善聚类性能。通过Sphere、Rastrigin、Rosenbrock和Griewank四个标准测试函数和UCI标准数据集上进行测试的仿真实验表明,IABC算法收敛速度快,克服了原始算法易陷入局部最优解的缺点;IABC-Kmeans算法则具有更好的聚类质量和综合性能。 展开更多
关键词 人工蜂群算法 K均值聚类算法 适应度函数 位置更新公式 聚类
下载PDF
自适应搜索空间的混沌蜂群算法 被引量:46
16
作者 暴励 曾建潮 《计算机应用研究》 CSCD 北大核心 2010年第4期1330-1334,共5页
针对人工蜂群(ABC)算法的不足,以种群收敛程度为依据,结合混沌优化的思想,提出一种改进的人工蜂群算法—自适应搜索空间的混沌蜂群算法(SA-CABC)。其基本思想是在原搜索区域的基础上,根据每次寻优的结果自适应地调整搜索空间,逐步缩小... 针对人工蜂群(ABC)算法的不足,以种群收敛程度为依据,结合混沌优化的思想,提出一种改进的人工蜂群算法—自适应搜索空间的混沌蜂群算法(SA-CABC)。其基本思想是在原搜索区域的基础上,根据每次寻优的结果自适应地调整搜索空间,逐步缩小搜索区域,并利用混沌变量的内在随机性和遍历性跳出局部最优点,最终获得最优解。基于六个标准测试函数的仿真结果表明,本算法能有效地加快收敛速度,提高最优解的精度,其性能明显优于基本ABC算法,尤其适合高维的复杂函数的寻优。 展开更多
关键词 人工蜂群算法 混沌优化 自适应搜索空间
下载PDF
改进的人工蜂群算法性能 被引量:45
17
作者 胡珂 李迅波 王振林 《计算机应用》 CSCD 北大核心 2011年第4期1107-1110,共4页
为克服人工蜂群算法容易陷入局部最优解的缺点,提出一种新的改进型人工蜂群算法。首先,利用数学中的外推技巧定义了新的位置更新公式,由此构造出一种具有引导趋势的蜂群算法;其次,为了克服算法在进化后期位置相似度高、更新速度慢的缺陷... 为克服人工蜂群算法容易陷入局部最优解的缺点,提出一种新的改进型人工蜂群算法。首先,利用数学中的外推技巧定义了新的位置更新公式,由此构造出一种具有引导趋势的蜂群算法;其次,为了克服算法在进化后期位置相似度高、更新速度慢的缺陷,将微调机制引入算法中,讨论摄动因子范围,由此提高算法在可行区域内的局部搜索能力。最后通过3个基准函数仿真测试,结果表明:与常规算法相较,改进后在搜索性能和精度方面均有明显提高。 展开更多
关键词 群体智能 人工蜂群 优化 摄动因子 基准函数
下载PDF
改进的人工蜂群算法在函数优化问题中的应用 被引量:40
18
作者 王慧颖 刘建军 王全洲 《计算机工程与应用》 CSCD 2012年第19期36-39,共4页
人工蜂群算法是近年来新提出的一种优化算法。针对标准人工蜂群算法的局部搜索能力差,精度低的缺点,提出了一个改进的人工蜂群算法,利用全局最优解和个体极值的信息来改进人工蜂群算法中的搜索模式,并引入异步变化学习因子,保持全局搜... 人工蜂群算法是近年来新提出的一种优化算法。针对标准人工蜂群算法的局部搜索能力差,精度低的缺点,提出了一个改进的人工蜂群算法,利用全局最优解和个体极值的信息来改进人工蜂群算法中的搜索模式,并引入异步变化学习因子,保持全局搜索和局部搜索的平衡。将改进的人工蜂群算法在函数优化问题上进行测试,结果表明改进的人工蜂群算法优于原算法。 展开更多
关键词 人工蜂群算法(abc) 异步变化学习因子 函数优化问题
下载PDF
基于K-means的改进人工蜂群聚类算法 被引量:41
19
作者 曹永春 蔡正琦 邵亚斌 《计算机应用》 CSCD 北大核心 2014年第1期204-207,217,共5页
针对K-means聚类算法对初始聚类中心敏感和易陷入局部最优解的缺点,提出一种基于K-means的人工蜂群(ABC)聚类算法。将改进的人工蜂群算法和K-means迭代相结合,使算法对初始聚类中心的依赖性和陷入局部最优解的可能性降低,提高了算法的... 针对K-means聚类算法对初始聚类中心敏感和易陷入局部最优解的缺点,提出一种基于K-means的人工蜂群(ABC)聚类算法。将改进的人工蜂群算法和K-means迭代相结合,使算法对初始聚类中心的依赖性和陷入局部最优解的可能性降低,提高了算法的稳定性。通过基于反向学习的初始化策略,增强了初始群体的多样性。利用非线性选择策略,改善了过早收敛问题,提高了搜索效率。通过对邻域搜索范围的动态调整,提高了算法收敛速度,增强了局部寻优能力。实验结果表明,该算法不仅克服了K-means算法稳定性差的缺点,而且具有良好的性能和聚类效果。 展开更多
关键词 人工蜂群算法 聚类分析 K-MEANS 反向学习 非线性选择
下载PDF
基于人工蜂群算法与BP神经网络的水质评价模型 被引量:39
20
作者 苏彩红 向娜 +1 位作者 陈广义 王飞 《环境工程学报》 CAS CSCD 北大核心 2012年第2期699-704,共6页
针对BP网络水质评价模型的不足,引入人工蜂群(ABC)算法,将求解BP神经网络各层权值、阀值的过程转化为蜜蜂寻找最佳蜜源的过程,提出了一种新的结合人工蜂群算法的BP网络水质评价方法(ABC-BP)。并以2000—2006年渭河监测断面的10组实测数... 针对BP网络水质评价模型的不足,引入人工蜂群(ABC)算法,将求解BP神经网络各层权值、阀值的过程转化为蜜蜂寻找最佳蜜源的过程,提出了一种新的结合人工蜂群算法的BP网络水质评价方法(ABC-BP)。并以2000—2006年渭河监测断面的10组实测数据作为测试样本对其水质进行了评价,实验结果表明该方法得到的水质评价结果准确,并具有很强的稳定性和鲁棒性。 展开更多
关键词 神经网络 人工蜂群(abc)算法 水质评价
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部