The methodology of 5-axis cutter selection to avert collision for free-form surface machining by flat-end cutters is presented. The combination of different cutters is adopt aiming at short machining time and high pre...The methodology of 5-axis cutter selection to avert collision for free-form surface machining by flat-end cutters is presented. The combination of different cutters is adopt aiming at short machining time and high precision. The optimal small cutter is determined based on the geometric information of the points where a cutter most probably collide with the machined surface. Several larger cutters are selected to machine the surface in order to find the interference-free area. The difference of machining time for this area between the optimal small cutter and the large cutters is calculated. The functional relationship between the machining time and the radius of a cutter is established, by which the optimal number of cutters is obtained. The combination of cutters, which possesses the minimum overall machining time, is selected as the optimal cutter sizes. A case study has demonstrated the validity of the proposed methodology and algorithms.展开更多
Path planning problem is the core and hot research topic of multiple Automatic Guided Vehicles (multi-AGVs) system. Although there are many research results, they do not solve the path planning problem from the perspe...Path planning problem is the core and hot research topic of multiple Automatic Guided Vehicles (multi-AGVs) system. Although there are many research results, they do not solve the path planning problem from the perspective of reducing traffic congestion. A collision-free path planning method based on improved A* Algorithm for multi-AGVs logistics sorting system is proposed in this paper. In the method, the environment of warehouse operation for AGVs is described by using grid method. The estimated cost of A* algorithm is improved by adding the penalty value of the paths that AGVs share with each other to alleviate traffic congestion and collision resolution rules are made according to different types of collisions. Then the collision-free path planning is done by combing the improved A* algorithm and collision resolution rules. The sorting efficiency of the method is compared with that of original A* algorithm. Simulation results show that the new collision-free path planning method can improve the sorting efficiency of multi-AGVs system and relieve traffic congestion.展开更多
The specificities of collision-free path planning of space manipulators are analyzed. Path planning strategies are presented in consideration of these specificities, and an implementation procedure is also described i...The specificities of collision-free path planning of space manipulators are analyzed. Path planning strategies are presented in consideration of these specificities, and an implementation procedure is also described in detail according to these strategies.展开更多
This paper described a new method to plan out welding paths for multiple robots in virtual manufacturing environment. We first distribute welding tasks and priority for multi robots, and then apply corresponding behav...This paper described a new method to plan out welding paths for multiple robots in virtual manufacturing environment. We first distribute welding tasks and priority for multi robots, and then apply corresponding behavior rules to help to plan out welding paths for robots collision free, which is a base fixed problem. Finally, we testify the algorithm to be practical in virtual environment, and output robot programs to direct production process. This new way will help us to find a new development method for multiple robots path planning.展开更多
基金Funded by the Doctorate Degree Program Foundation of the Ministry of Education (No. 2000061120)
文摘The methodology of 5-axis cutter selection to avert collision for free-form surface machining by flat-end cutters is presented. The combination of different cutters is adopt aiming at short machining time and high precision. The optimal small cutter is determined based on the geometric information of the points where a cutter most probably collide with the machined surface. Several larger cutters are selected to machine the surface in order to find the interference-free area. The difference of machining time for this area between the optimal small cutter and the large cutters is calculated. The functional relationship between the machining time and the radius of a cutter is established, by which the optimal number of cutters is obtained. The combination of cutters, which possesses the minimum overall machining time, is selected as the optimal cutter sizes. A case study has demonstrated the validity of the proposed methodology and algorithms.
文摘Path planning problem is the core and hot research topic of multiple Automatic Guided Vehicles (multi-AGVs) system. Although there are many research results, they do not solve the path planning problem from the perspective of reducing traffic congestion. A collision-free path planning method based on improved A* Algorithm for multi-AGVs logistics sorting system is proposed in this paper. In the method, the environment of warehouse operation for AGVs is described by using grid method. The estimated cost of A* algorithm is improved by adding the penalty value of the paths that AGVs share with each other to alleviate traffic congestion and collision resolution rules are made according to different types of collisions. Then the collision-free path planning is done by combing the improved A* algorithm and collision resolution rules. The sorting efficiency of the method is compared with that of original A* algorithm. Simulation results show that the new collision-free path planning method can improve the sorting efficiency of multi-AGVs system and relieve traffic congestion.
文摘The specificities of collision-free path planning of space manipulators are analyzed. Path planning strategies are presented in consideration of these specificities, and an implementation procedure is also described in detail according to these strategies.
基金Natural Science Foundation of China (No.5 98895 0 5 )
文摘This paper described a new method to plan out welding paths for multiple robots in virtual manufacturing environment. We first distribute welding tasks and priority for multi robots, and then apply corresponding behavior rules to help to plan out welding paths for robots collision free, which is a base fixed problem. Finally, we testify the algorithm to be practical in virtual environment, and output robot programs to direct production process. This new way will help us to find a new development method for multiple robots path planning.