This research presents damage causes of the pylons in the ancient Egyptian temples based on 3D finite elements analysis. The main purpose of the research determines the failure causes of the first pylon of the Ramessi...This research presents damage causes of the pylons in the ancient Egyptian temples based on 3D finite elements analysis. The main purpose of the research determines the failure causes of the first pylon of the Ramessium temple, which is situated in Upper Egypt, at Luxor “Thebes” on the west bank of the Nile River. The first pylon of Ramessium temple subjected to seismic activity effects on long term, combined with several structural damage factors such as the defects resulting from the construction technique, where the builder used the poor quality of stones in foundations of the pylon, the building materials residue was used as filler for the core of the pylon walls, and it lacked vertical joints between the courses. In addition to it founded on alluvial soil that is vulnerable to contaminated water, it is still suffering damage factors and urban trespasses at the moment. All of the former factors helped the pylon to be affected by the earthquakes loads that occurred on it. The structural behavior of the pylon under self-weight and earthquakes loads were carried out by Numerical analysis to find out the loads and stresses which caused collapsing of the pylon. Results of the study indicated that the pylon subjected to a horizontal displacement due to old earthquakes force, led to collapse of the pylon. Finally, the study represents use of modern technique to study the structural behavior of the most important architectural units in ancient Egyptian temples to identify the causes of its collapse.展开更多
文摘This research presents damage causes of the pylons in the ancient Egyptian temples based on 3D finite elements analysis. The main purpose of the research determines the failure causes of the first pylon of the Ramessium temple, which is situated in Upper Egypt, at Luxor “Thebes” on the west bank of the Nile River. The first pylon of Ramessium temple subjected to seismic activity effects on long term, combined with several structural damage factors such as the defects resulting from the construction technique, where the builder used the poor quality of stones in foundations of the pylon, the building materials residue was used as filler for the core of the pylon walls, and it lacked vertical joints between the courses. In addition to it founded on alluvial soil that is vulnerable to contaminated water, it is still suffering damage factors and urban trespasses at the moment. All of the former factors helped the pylon to be affected by the earthquakes loads that occurred on it. The structural behavior of the pylon under self-weight and earthquakes loads were carried out by Numerical analysis to find out the loads and stresses which caused collapsing of the pylon. Results of the study indicated that the pylon subjected to a horizontal displacement due to old earthquakes force, led to collapse of the pylon. Finally, the study represents use of modern technique to study the structural behavior of the most important architectural units in ancient Egyptian temples to identify the causes of its collapse.