Hypoxia-inducible factor 1 alpha(HIF-1α) and its target genes vascular endothelial growth factor(VEGF) and transferrins(TF) play an important role in native endothermic animals' adaptation to the high altitude...Hypoxia-inducible factor 1 alpha(HIF-1α) and its target genes vascular endothelial growth factor(VEGF) and transferrins(TF) play an important role in native endothermic animals' adaptation to the high altitude environments. For ectothermic animals – especially frogs – it remains undetermined whether HIF-1α and its target genes(VEGF and TF) play an important role in high altitude adaptation, too. In this study, we compared the gene sequences and expression of HIF-1α and its target genes(VEGF and TF) between three Nanorana parkeri populations from different altitudes(3008 m a.s.l., 3440 m a.s.l. and 4312 m a.s.l.). We observed that the c DNA sequences of HIF-1A exhibited high sequence similarity(99.38%) among the three altitudinally separated populations; but with increasing altitude, the expression of HIF-1A and its target genes(VEGF and TF) increased significantly. These results indicate that HIF-1α plays an important role in N. parkeri adaptation to the high altitude, similar to its role in endothermic animals.展开更多
基金supported by National Natural Science Foundation of China(No.31471994)
文摘Hypoxia-inducible factor 1 alpha(HIF-1α) and its target genes vascular endothelial growth factor(VEGF) and transferrins(TF) play an important role in native endothermic animals' adaptation to the high altitude environments. For ectothermic animals – especially frogs – it remains undetermined whether HIF-1α and its target genes(VEGF and TF) play an important role in high altitude adaptation, too. In this study, we compared the gene sequences and expression of HIF-1α and its target genes(VEGF and TF) between three Nanorana parkeri populations from different altitudes(3008 m a.s.l., 3440 m a.s.l. and 4312 m a.s.l.). We observed that the c DNA sequences of HIF-1A exhibited high sequence similarity(99.38%) among the three altitudinally separated populations; but with increasing altitude, the expression of HIF-1A and its target genes(VEGF and TF) increased significantly. These results indicate that HIF-1α plays an important role in N. parkeri adaptation to the high altitude, similar to its role in endothermic animals.