针对传统的基于协同过滤的移动服务推荐方法存在的数据稀疏性和用户冷启动问题,提出一种基于上下文相似度和社会网络的移动服务推荐方法(Context-similarity and Social-network based Mobile Service Recommendation,CSMSR).该方法将...针对传统的基于协同过滤的移动服务推荐方法存在的数据稀疏性和用户冷启动问题,提出一种基于上下文相似度和社会网络的移动服务推荐方法(Context-similarity and Social-network based Mobile Service Recommendation,CSMSR).该方法将基于用户的上下文相似度引入个性化服务推荐过程,并挖掘由移动用户虚拟交互构成的社会关系网络,按照信任度选取信任用户;然后结合基于用户评分相似度计算发现的近邻,分别从相似用户和信任用户中选择相应的邻居用户,对目标用户进行偏好预测和推荐.实验表明,与已有的服务推荐方法 TNCF、SRMTC及CF-DNC相比,CSMSR方法有效地缓解数据稀疏性并提高推荐准确率,有利于发现用户感兴趣的服务,提升用户个性化服务体验.展开更多
Recommender system (RS) has become a very important factor in many eCommerce sites. In our daily life, we rely on the recommendation from other persons either by word of mouth, recommendation letters, movie, item and ...Recommender system (RS) has become a very important factor in many eCommerce sites. In our daily life, we rely on the recommendation from other persons either by word of mouth, recommendation letters, movie, item and book reviews printed in newspapers, etc. The typical Recommender Systems are software tools and techniques that provide support to people by identifying interesting products and services in online store. It also provides a recommendation for certain users who search for the recommendations. The most important open challenge in Collaborative filtering recommender system is the cold start problem. If the adequate or sufficient information is not available for a new item or users, the recommender system runs into the cold start problem. To increase the usefulness of collaborative recommender systems, it could be desirable to eliminate the challenge such as cold start problem. Revealing the community structures is crucial to understand and more important with the increasing popularity of online social networks. The community detection is a key issue in social network analysis in which nodes of the communities are tightly connected each other and loosely connected between other communities. Many algorithms like Givan-Newman algorithm, modularity maximization, leading eigenvector, walk trap, etc., are used to detect the communities in the networks. To test the community division is meaningful we define a quality function called modularity. Modularity is that the links within a community are higher than the expected links in those communities. In this paper, we try to give a solution to the cold-start problem based on community detection algorithm that extracts the community from the social networks and identifies the similar users on that network. Hence, within the proposed work several intrinsic details are taken as a rule of thumb to boost the results higher. Moreover, the simulation experiment was taken to solve the cold start problem.展开更多
文摘针对传统的基于协同过滤的移动服务推荐方法存在的数据稀疏性和用户冷启动问题,提出一种基于上下文相似度和社会网络的移动服务推荐方法(Context-similarity and Social-network based Mobile Service Recommendation,CSMSR).该方法将基于用户的上下文相似度引入个性化服务推荐过程,并挖掘由移动用户虚拟交互构成的社会关系网络,按照信任度选取信任用户;然后结合基于用户评分相似度计算发现的近邻,分别从相似用户和信任用户中选择相应的邻居用户,对目标用户进行偏好预测和推荐.实验表明,与已有的服务推荐方法 TNCF、SRMTC及CF-DNC相比,CSMSR方法有效地缓解数据稀疏性并提高推荐准确率,有利于发现用户感兴趣的服务,提升用户个性化服务体验.
文摘Recommender system (RS) has become a very important factor in many eCommerce sites. In our daily life, we rely on the recommendation from other persons either by word of mouth, recommendation letters, movie, item and book reviews printed in newspapers, etc. The typical Recommender Systems are software tools and techniques that provide support to people by identifying interesting products and services in online store. It also provides a recommendation for certain users who search for the recommendations. The most important open challenge in Collaborative filtering recommender system is the cold start problem. If the adequate or sufficient information is not available for a new item or users, the recommender system runs into the cold start problem. To increase the usefulness of collaborative recommender systems, it could be desirable to eliminate the challenge such as cold start problem. Revealing the community structures is crucial to understand and more important with the increasing popularity of online social networks. The community detection is a key issue in social network analysis in which nodes of the communities are tightly connected each other and loosely connected between other communities. Many algorithms like Givan-Newman algorithm, modularity maximization, leading eigenvector, walk trap, etc., are used to detect the communities in the networks. To test the community division is meaningful we define a quality function called modularity. Modularity is that the links within a community are higher than the expected links in those communities. In this paper, we try to give a solution to the cold-start problem based on community detection algorithm that extracts the community from the social networks and identifies the similar users on that network. Hence, within the proposed work several intrinsic details are taken as a rule of thumb to boost the results higher. Moreover, the simulation experiment was taken to solve the cold start problem.