Numerical simulation and experimental results were employed for the identification of the most vulnerable zones in three-pass cold-metal-transferring (CMT) welded joint. The residual stress distribution in the joint...Numerical simulation and experimental results were employed for the identification of the most vulnerable zones in three-pass cold-metal-transferring (CMT) welded joint. The residual stress distribution in the joint was predicted by finite element (FE) method, while the structural morphology of distinctive zones was obtained through metallographic experiments. The highest principal stress made the symmetric face of the joint most sensitive to tensile cracks under service conditions. Whereas, the boundaries between the weld seam and the base plates were sensitive to cracks because the equivalent von Mises stress was the highest when the first interpass cooling was finished. The third weld pass and the inter-pass remelted zones exhibited the modest mechanical performances as a result of the coarse grain and coarse grain boundary, respectively. The most vulnerable zones were regarded to be the crossed parts between the zones identified by numerical and experimental methods.展开更多
Cold Metal Transfer technology has revolutionized the welding of dissimilar metals and thicker materials by producing improved weld bead aesthetics with controlled metal deposition and low heat-input. In this study, t...Cold Metal Transfer technology has revolutionized the welding of dissimilar metals and thicker materials by producing improved weld bead aesthetics with controlled metal deposition and low heat-input. In this study, the process, weld combinations, laser-CMT hybrid welding and applications of CMT welding are critically reviewed. Microstructure and other weld characteristics have been discussed at length for various base metal combinations. Particularly, the welding of aluminium and steel with better results has been possible with CMT Welding. The results reviewed in this article indicate that the CMT-Laser hybrid welding is more preferable to Laser or Laser hybrid welding. CMT welding has found applications in automobile industries, defence sectors and power plants as a method of additive manufacturing.展开更多
利用CMT(cold metal transfer)技术在30CrMnSi钢板表面熔敷CuSi3;采用背散射、能谱分析及X射线衍射等方法对接头区显微组织及成分进行了研究。结果表明,CMT技术实现了熔敷层与基体的冶金结合,送丝速度为5.0 m/min,焊接速度为17.0 mm/s时...利用CMT(cold metal transfer)技术在30CrMnSi钢板表面熔敷CuSi3;采用背散射、能谱分析及X射线衍射等方法对接头区显微组织及成分进行了研究。结果表明,CMT技术实现了熔敷层与基体的冶金结合,送丝速度为5.0 m/min,焊接速度为17.0 mm/s时,稀释率极低;界面区由Fe3Si化合物、α-Fe及ε-Cu组成。送丝速度较低时,界面结构为Fe3Si/α-Fe+ε-Cu/α-Fe,熔敷区出现Fe2Si化合物;提高送丝速度,界面结构为Fe3Si+α-Fe+ε-Cu/α-Fe+ε-Cu,Fe2Si化合物被Fe3Si化合物取代;进一步提高送丝速度,界面结构为α-Fe+ε-Cu,弥散分布的球状富铁相聚合成长为星状及大块团状的α-Fe固溶体。送丝速度的变化对熔敷区组织具有显著影响。展开更多
基金Project(9140C850205120C8501)supported by the Major Program of State Key Laboratory of Remanufacturing,China
文摘Numerical simulation and experimental results were employed for the identification of the most vulnerable zones in three-pass cold-metal-transferring (CMT) welded joint. The residual stress distribution in the joint was predicted by finite element (FE) method, while the structural morphology of distinctive zones was obtained through metallographic experiments. The highest principal stress made the symmetric face of the joint most sensitive to tensile cracks under service conditions. Whereas, the boundaries between the weld seam and the base plates were sensitive to cracks because the equivalent von Mises stress was the highest when the first interpass cooling was finished. The third weld pass and the inter-pass remelted zones exhibited the modest mechanical performances as a result of the coarse grain and coarse grain boundary, respectively. The most vulnerable zones were regarded to be the crossed parts between the zones identified by numerical and experimental methods.
文摘Cold Metal Transfer technology has revolutionized the welding of dissimilar metals and thicker materials by producing improved weld bead aesthetics with controlled metal deposition and low heat-input. In this study, the process, weld combinations, laser-CMT hybrid welding and applications of CMT welding are critically reviewed. Microstructure and other weld characteristics have been discussed at length for various base metal combinations. Particularly, the welding of aluminium and steel with better results has been possible with CMT Welding. The results reviewed in this article indicate that the CMT-Laser hybrid welding is more preferable to Laser or Laser hybrid welding. CMT welding has found applications in automobile industries, defence sectors and power plants as a method of additive manufacturing.
文摘利用CMT(cold metal transfer)技术在30CrMnSi钢板表面熔敷CuSi3;采用背散射、能谱分析及X射线衍射等方法对接头区显微组织及成分进行了研究。结果表明,CMT技术实现了熔敷层与基体的冶金结合,送丝速度为5.0 m/min,焊接速度为17.0 mm/s时,稀释率极低;界面区由Fe3Si化合物、α-Fe及ε-Cu组成。送丝速度较低时,界面结构为Fe3Si/α-Fe+ε-Cu/α-Fe,熔敷区出现Fe2Si化合物;提高送丝速度,界面结构为Fe3Si+α-Fe+ε-Cu/α-Fe+ε-Cu,Fe2Si化合物被Fe3Si化合物取代;进一步提高送丝速度,界面结构为α-Fe+ε-Cu,弥散分布的球状富铁相聚合成长为星状及大块团状的α-Fe固溶体。送丝速度的变化对熔敷区组织具有显著影响。