The temperature biases of 28 CMIP5 AGCMs are evaluated over the Tibetan Plateau(TP) for the period 1979–2005. The results demonstrate that the majority of CMIP5 models underestimate annual and seasonal mean surface 2...The temperature biases of 28 CMIP5 AGCMs are evaluated over the Tibetan Plateau(TP) for the period 1979–2005. The results demonstrate that the majority of CMIP5 models underestimate annual and seasonal mean surface 2-m air temperatures(Tas) over the TP. In addition, the ensemble of the 28 AGCMs and half of the individual models underestimate annual mean skin temperatures(Ts) over the TP. The cold biases are larger in Tasthan in Ts, and are larger over the western TP. By decomposing the Tsbias using the surface energy budget equation, we investigate the contributions to the cold surface temperature bias on the TP from various factors, including the surface albedo-induced bias, surface cloud radiative forcing, clear-sky shortwave radiation, clear-sky downward longwave radiation, surface sensible heat flux, latent heat flux,and heat storage. The results show a suite of physically interlinked processes contributing to the cold surface temperature bias.Strong negative surface albedo-induced bias associated with excessive snow cover and the surface heat fluxes are highly anticorrelated, and the cancelling out of these two terms leads to a relatively weak contribution to the cold bias. Smaller surface turbulent fluxes lead to colder lower-tropospheric temperature and lower water vapor content, which in turn cause negative clear-sky downward longwave radiation and cold bias. The results suggest that improvements in the parameterization of the area of snow cover, as well as the boundary layer, and hence surface turbulent fluxes, may help to reduce the cold bias over the TP in the models.展开更多
This paper aims to assess the performances of different model initialization conditions(ICs)and lateral boundary conditions between two global models(GMs),i.e.,the European Centre for Medium-Range Weather Forecasts(EC...This paper aims to assess the performances of different model initialization conditions(ICs)and lateral boundary conditions between two global models(GMs),i.e.,the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP),on the accuracy of the Global/Regional Assimilation and Prediction System(GRAPES)forecasts for south China.A total of 3-month simulations during the rainy season were examined and a specific case of torrential rain over Guangdong Province was verified.Both ICs exhibited cold biases over south China,as well as a strong dry bias over the Pearl River Delta(PRD).In particular,the ICs from the ECMWF had a stronger cold bias over the PRD region and a more detailed structure than NCEP.In general,the NCEP provided a realistic surface temperature compared to the ECMWF over south China.Moreover,GRAPES initialized by the NCEP had better simulations of both location and intensity of precipitation than by the ECWMF.The results presented in this paper could be used as a general guideline to the operational numerical weather prediction that uses regional models driven by the GMs.展开更多
Significant progresses have been made in recent years in precipitation data analyses at regional to global scales. This paper re-views and synthesizes recent advances in precipitation-bias corrections and applications...Significant progresses have been made in recent years in precipitation data analyses at regional to global scales. This paper re-views and synthesizes recent advances in precipitation-bias corrections and applications in many countries and over the cold re-gions. The main objective of this review is to identify and examine gaps in regional and national precipitation-error analyses. This paper also discusses and recommends future research needs and directions. More effort and coordination are necessary in the determinations of precipitation biases on large regions across national borders. It is important to emphasize that bias cor-rections of precipitation measurements affect both water budget and energy balance calculations, particularly over the cold regions.展开更多
2022年3月31日—4月2日,云南省出现历史同期罕见的寒潮天气过程.通过地面观测资料、高空观测资料和NCEP FNL资料,对此次寒潮过程的成因进行分析,并对欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)...2022年3月31日—4月2日,云南省出现历史同期罕见的寒潮天气过程.通过地面观测资料、高空观测资料和NCEP FNL资料,对此次寒潮过程的成因进行分析,并对欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)模式的形势场及最低气温进行检验.结果表明:此次寒潮过程发生在北极涛动负位相期间,西伯利亚高压偏强,欧亚中高纬形成两槽一脊的环流形势.东亚大槽后侧强劲的偏北风引导低层冷空气南移,南支槽向东移动为云南省输送暖湿气流,700 hPa切变线和地面冷锋的南侵,共同造成了此次寒潮天气过程的发生;此次寒潮过程的强降温是由过程中近地层强冷平流的作用,冷锋后部较强的垂直上升运动,引起绝热膨胀冷却作用,加剧了局地气温的下降;通过定量分析导致昆明局地气温变化的各项因子发现,昆明的降温主要受温度平流项的影响,其次是非绝热项的影响. ECMWF模式能较好地预报此次寒潮过程的高低空环流形势及降温的范围,但对降温强度的预报效果相对较差.展开更多
Numerous studies were published in the last two decades to evaluate and project the permafrost changes in its thermal state,mainly based on the soil temperature datasets from the Coupled Model Intercomparison Project(...Numerous studies were published in the last two decades to evaluate and project the permafrost changes in its thermal state,mainly based on the soil temperature datasets from the Coupled Model Intercomparison Project(CMIP),and discuss the impacts of permafrost changes on regional hydrological,ecological and climatic systems and even carbon cycles.However,limited monitored soil temperature data are available to validate the CMIP outputs,resulting in the over-projection of future permafrost changes in CMIP3 and CMIP5.Moreover,future permafrost changes in CMIP6,particularly over the QinghaieTibet Plateau(QTP),where permafrost covers more than 40%of its territory,are still unknown.To address this gap,we evaluated and calibrated the monthly ground surface temperature(GST;5 cm below the ground surface),which was often used as the upper boundary to simulate and project permafrost changes derived from 19 CMIP6 Earth System Models(ESMs)against in situ measurements over the QTP.We generated the monthly GST series from 1900 to 2014 for five sites based on the linear calibration models and validated them through the three other sites using the same calibration methods.Results showed that all of the ESMs could capture the dynamics of in situ GST with high correlations(r>0.90).However,large errors were detected with a broad range of centred root-mean-square errors(1.14-4.98℃).The Top 5 model ensembles(MME5)performed better than most individual ESMs and averaged multi-model ensembles(MME19).The calibrated GST performed better than the GST obtained from MME5.Both annual and seasonal GSTs exhibited warming trends with an average annual rate of 0.04℃ per decade in the annual GST.The average seasonal warming rate was highest in winter and spring and lowest in summer.This reconstructed GST data series could be used to simulate the long-term permafrost temperature over the QTP.展开更多
利用常规高空、地面气象观测资料和ECMWF、ECMWF_THIN、T639及宁夏WRF数值预报模式产品,对2015年10月30日—11月2日宁夏首场冷涡降雪天气过程的数值模式预报性能及其相伴复杂天气的可预报性进行检验和分析。结果表明:依据700 h Pa相对...利用常规高空、地面气象观测资料和ECMWF、ECMWF_THIN、T639及宁夏WRF数值预报模式产品,对2015年10月30日—11月2日宁夏首场冷涡降雪天气过程的数值模式预报性能及其相伴复杂天气的可预报性进行检验和分析。结果表明:依据700 h Pa相对湿度≥90%和比湿≥2 g·kg-1、850 h Pa温度迅速降至冰点以下、2 m和地面气温降至1℃以下、200 h Pa和700 h Pa偏北风速分别达40 m·s-1和20 m·s-1、雪后天气转为晴到少云、地面偏南风<4 m·s-1且相对湿度≥90%、大气层结稳定等模式预报结果,可提前对低涡和切变线引发的降雪、大风降温、雪后大雾以及积雪、道路结冰等复杂天气作出较为准确的预报。根据低涡所经区域的厚湿层、水汽辐合及垂直上升运动等大值区和各家模式预报较大降水的重叠区域对强降雪区域及强度进行有效订正,但由于预报员对各家模式一致性预报误差的认识和订正能力有限,使得对强降雪中心、降雪减弱时的局地强降雪以及区域大雾等天气精细化预报能力较差。展开更多
Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adeq...Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance(ECR) system for the ‘whistler/chorus' wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén' wave study. The parameters of ‘whistler/chorus' waves and ‘Alfvén' waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt' plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density.展开更多
本文首先构建了二流—四流球谐函数谱展开累加辐射传输的新方案,然后将其应用于国家气候中心第二代大气环流模式BCC_AGCM2.0.1的新版本中,并与模式中原有的Eddington累加方案进行了比较。由于新方案本质上是单层Eddington近似方案在四...本文首先构建了二流—四流球谐函数谱展开累加辐射传输的新方案,然后将其应用于国家气候中心第二代大气环流模式BCC_AGCM2.0.1的新版本中,并与模式中原有的Eddington累加方案进行了比较。由于新方案本质上是单层Eddington近似方案在四流上的推广。因此新方案在计算精度上要优于原方案。通过在全球气候模式中的应用与比较,本文发现新方案对气候模拟会产生比较大的影响。在晴空条件下,新方案计算的在南纬30°到60°区间、北大西洋东北部以及非洲北部的撒哈拉沙漠区域的地表向下年平均短波辐射通量要小于原方案结果,最大差别可以达到3.5 W/m2;同时,新方案计算的在南纬30°到60°区间和北大西洋东北部的大气顶向上年平均短波辐射通量要大于原方案结果,最大差别达到3 W/m2。在有云大气情况下,新方案计算的地表向下年平均短波辐射通量要小于原方案结果,并随着纬度的增加,新旧两种方案的差别逐渐变大,在南北极时达到最大5.5 W/m2;同时,新方案计算的在赤道区域的大气顶的年平均短波向上辐射通量要小于原方案结果,最大差别为2.5 W/m2,而在南北纬30°到60°区间,新方案计算的在大气顶的年平均短波向上辐射通量则要大于原方案结果,最大差别为1.5 W/m2。新方案计算的年平均短波加热率普遍高于原方案结果,特别是在800 h Pa到地表之间的低层大气以及50 h Pa到100 h Pa的高层大气,最大差别可达0.03 K/d。因此,新方案有助于改善全球气候模式中普遍存在的赤道平流层中下层的温度冷偏差现象。展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 91437219 and 91637312)the Third Tibetan Plateau Scientific Experiment (Grant No. GYHY201406001)+1 种基金the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-DQC018)the Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund (second phase)
文摘The temperature biases of 28 CMIP5 AGCMs are evaluated over the Tibetan Plateau(TP) for the period 1979–2005. The results demonstrate that the majority of CMIP5 models underestimate annual and seasonal mean surface 2-m air temperatures(Tas) over the TP. In addition, the ensemble of the 28 AGCMs and half of the individual models underestimate annual mean skin temperatures(Ts) over the TP. The cold biases are larger in Tasthan in Ts, and are larger over the western TP. By decomposing the Tsbias using the surface energy budget equation, we investigate the contributions to the cold surface temperature bias on the TP from various factors, including the surface albedo-induced bias, surface cloud radiative forcing, clear-sky shortwave radiation, clear-sky downward longwave radiation, surface sensible heat flux, latent heat flux,and heat storage. The results show a suite of physically interlinked processes contributing to the cold surface temperature bias.Strong negative surface albedo-induced bias associated with excessive snow cover and the surface heat fluxes are highly anticorrelated, and the cancelling out of these two terms leads to a relatively weak contribution to the cold bias. Smaller surface turbulent fluxes lead to colder lower-tropospheric temperature and lower water vapor content, which in turn cause negative clear-sky downward longwave radiation and cold bias. The results suggest that improvements in the parameterization of the area of snow cover, as well as the boundary layer, and hence surface turbulent fluxes, may help to reduce the cold bias over the TP in the models.
基金National Key R&D Program of China(2018YFC1506901)National Natural Science Foundation of China(41505084)Guangzhou Science and Technology Project(201804020038)
文摘This paper aims to assess the performances of different model initialization conditions(ICs)and lateral boundary conditions between two global models(GMs),i.e.,the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP),on the accuracy of the Global/Regional Assimilation and Prediction System(GRAPES)forecasts for south China.A total of 3-month simulations during the rainy season were examined and a specific case of torrential rain over Guangdong Province was verified.Both ICs exhibited cold biases over south China,as well as a strong dry bias over the Pearl River Delta(PRD).In particular,the ICs from the ECMWF had a stronger cold bias over the PRD region and a more detailed structure than NCEP.In general,the NCEP provided a realistic surface temperature compared to the ECMWF over south China.Moreover,GRAPES initialized by the NCEP had better simulations of both location and intensity of precipitation than by the ECWMF.The results presented in this paper could be used as a general guideline to the operational numerical weather prediction that uses regional models driven by the GMs.
基金supported by International Partnership Pro-ject of the CAS (CXTD-Z2005-2)the One Hundred Talents program of CSA, and the U.S. National Science Foundation OPP grants 0230083, 0612334, and 0632160
文摘Significant progresses have been made in recent years in precipitation data analyses at regional to global scales. This paper re-views and synthesizes recent advances in precipitation-bias corrections and applications in many countries and over the cold re-gions. The main objective of this review is to identify and examine gaps in regional and national precipitation-error analyses. This paper also discusses and recommends future research needs and directions. More effort and coordination are necessary in the determinations of precipitation biases on large regions across national borders. It is important to emphasize that bias cor-rections of precipitation measurements affect both water budget and energy balance calculations, particularly over the cold regions.
文摘2022年3月31日—4月2日,云南省出现历史同期罕见的寒潮天气过程.通过地面观测资料、高空观测资料和NCEP FNL资料,对此次寒潮过程的成因进行分析,并对欧洲中期天气预报中心(European Centre for Medium-Range Weather Forecasts,ECMWF)模式的形势场及最低气温进行检验.结果表明:此次寒潮过程发生在北极涛动负位相期间,西伯利亚高压偏强,欧亚中高纬形成两槽一脊的环流形势.东亚大槽后侧强劲的偏北风引导低层冷空气南移,南支槽向东移动为云南省输送暖湿气流,700 hPa切变线和地面冷锋的南侵,共同造成了此次寒潮天气过程的发生;此次寒潮过程的强降温是由过程中近地层强冷平流的作用,冷锋后部较强的垂直上升运动,引起绝热膨胀冷却作用,加剧了局地气温的下降;通过定量分析导致昆明局地气温变化的各项因子发现,昆明的降温主要受温度平流项的影响,其次是非绝热项的影响. ECMWF模式能较好地预报此次寒潮过程的高低空环流形势及降温的范围,但对降温强度的预报效果相对较差.
基金supported by the National Natural Science Foundation of China(41931180)the Second Tibetan Plateau Scientific Expedition and Research(STEP)programme(2019QZKK0201)+1 种基金the State Key Laboratory of Cryospheric Science(SKLCS-ZZ-2020)the National Natural Science Foundation of China(42071094).
文摘Numerous studies were published in the last two decades to evaluate and project the permafrost changes in its thermal state,mainly based on the soil temperature datasets from the Coupled Model Intercomparison Project(CMIP),and discuss the impacts of permafrost changes on regional hydrological,ecological and climatic systems and even carbon cycles.However,limited monitored soil temperature data are available to validate the CMIP outputs,resulting in the over-projection of future permafrost changes in CMIP3 and CMIP5.Moreover,future permafrost changes in CMIP6,particularly over the QinghaieTibet Plateau(QTP),where permafrost covers more than 40%of its territory,are still unknown.To address this gap,we evaluated and calibrated the monthly ground surface temperature(GST;5 cm below the ground surface),which was often used as the upper boundary to simulate and project permafrost changes derived from 19 CMIP6 Earth System Models(ESMs)against in situ measurements over the QTP.We generated the monthly GST series from 1900 to 2014 for five sites based on the linear calibration models and validated them through the three other sites using the same calibration methods.Results showed that all of the ESMs could capture the dynamics of in situ GST with high correlations(r>0.90).However,large errors were detected with a broad range of centred root-mean-square errors(1.14-4.98℃).The Top 5 model ensembles(MME5)performed better than most individual ESMs and averaged multi-model ensembles(MME19).The calibrated GST performed better than the GST obtained from MME5.Both annual and seasonal GSTs exhibited warming trends with an average annual rate of 0.04℃ per decade in the annual GST.The average seasonal warming rate was highest in winter and spring and lowest in summer.This reconstructed GST data series could be used to simulate the long-term permafrost temperature over the QTP.
文摘利用常规高空、地面气象观测资料和ECMWF、ECMWF_THIN、T639及宁夏WRF数值预报模式产品,对2015年10月30日—11月2日宁夏首场冷涡降雪天气过程的数值模式预报性能及其相伴复杂天气的可预报性进行检验和分析。结果表明:依据700 h Pa相对湿度≥90%和比湿≥2 g·kg-1、850 h Pa温度迅速降至冰点以下、2 m和地面气温降至1℃以下、200 h Pa和700 h Pa偏北风速分别达40 m·s-1和20 m·s-1、雪后天气转为晴到少云、地面偏南风<4 m·s-1且相对湿度≥90%、大气层结稳定等模式预报结果,可提前对低涡和切变线引发的降雪、大风降温、雪后大雾以及积雪、道路结冰等复杂天气作出较为准确的预报。根据低涡所经区域的厚湿层、水汽辐合及垂直上升运动等大值区和各家模式预报较大降水的重叠区域对强降雪区域及强度进行有效订正,但由于预报员对各家模式一致性预报误差的认识和订正能力有限,使得对强降雪中心、降雪减弱时的局地强降雪以及区域大雾等天气精细化预报能力较差。
基金supported by National Natural Science Foundation of China(Nos.11505040,11261140326,11405038 and 51577043)China Postdoctoral Science Foundation(Nos.2016M591518,2015M570283)HIT.NSRIF under Grant No.2017008
文摘Dipole Research EXperiment(DREX) is a new terrella device as part of the Space Plasma Environment Research Facility(SPERF) for laboratory studies of space physics relevant to the inner magnetospheric plasmas. Adequate plasma sources are very important for DREX to achieve its scientific goals. According to different research requirements, there are two density regimes for DREX. The low density regime will be achieved by an electron cyclotron resonance(ECR) system for the ‘whistler/chorus' wave investigation, while the high density regime will be achieved by biased cold cathode discharge for the desired ‘Alfvén' wave study. The parameters of ‘whistler/chorus' waves and ‘Alfvén' waves are determined by the scaling law between space and laboratory plasmas in the current device. In this paper, the initial design of these two plasma sources for DREX is described. Focus is placed on the chosen frequency and operation mode of the ECR system which will produce relatively low density ‘artificial radiation belt' plasmas and the seed electrons, followed by the design of biased cold cathode discharge to generate plasma with high density.
文摘本文首先构建了二流—四流球谐函数谱展开累加辐射传输的新方案,然后将其应用于国家气候中心第二代大气环流模式BCC_AGCM2.0.1的新版本中,并与模式中原有的Eddington累加方案进行了比较。由于新方案本质上是单层Eddington近似方案在四流上的推广。因此新方案在计算精度上要优于原方案。通过在全球气候模式中的应用与比较,本文发现新方案对气候模拟会产生比较大的影响。在晴空条件下,新方案计算的在南纬30°到60°区间、北大西洋东北部以及非洲北部的撒哈拉沙漠区域的地表向下年平均短波辐射通量要小于原方案结果,最大差别可以达到3.5 W/m2;同时,新方案计算的在南纬30°到60°区间和北大西洋东北部的大气顶向上年平均短波辐射通量要大于原方案结果,最大差别达到3 W/m2。在有云大气情况下,新方案计算的地表向下年平均短波辐射通量要小于原方案结果,并随着纬度的增加,新旧两种方案的差别逐渐变大,在南北极时达到最大5.5 W/m2;同时,新方案计算的在赤道区域的大气顶的年平均短波向上辐射通量要小于原方案结果,最大差别为2.5 W/m2,而在南北纬30°到60°区间,新方案计算的在大气顶的年平均短波向上辐射通量则要大于原方案结果,最大差别为1.5 W/m2。新方案计算的年平均短波加热率普遍高于原方案结果,特别是在800 h Pa到地表之间的低层大气以及50 h Pa到100 h Pa的高层大气,最大差别可达0.03 K/d。因此,新方案有助于改善全球气候模式中普遍存在的赤道平流层中下层的温度冷偏差现象。