The thermal evolution of steel coil during cooling was simulated and investigated by the use of in-house Q-CSP software. The dependence of the thermal evolution of steel coil on cooling methods, temperature distributi...The thermal evolution of steel coil during cooling was simulated and investigated by the use of in-house Q-CSP software. The dependence of the thermal evolution of steel coil on cooling methods, temperature distribution of the strip before coiling, coil size and steel grades was also discussed. The study plays a significant role in helping steel makers to better understand and control the cooling process.展开更多
Ambient temperature of induction coil is an important factor to influence the implementation of the electromagnetic induction-controlled automated steel-teeming(EICAST) technology. Meanwhile, it also affects the forma...Ambient temperature of induction coil is an important factor to influence the implementation of the electromagnetic induction-controlled automated steel-teeming(EICAST) technology. Meanwhile, it also affects the formation of Fe–C alloy blocking layer, which determines the length and installation position of induction coil. An experimental platform was designed to imitate actual working conditions in a ladle with the EICAST system. Ambient temperature of induction coil under high-temperature condition was measured to verify the accuracy of numerical result. After containing molten steel for 120 min and steel teeming for 40 min, the ambient temperature on the upper side of induction coil is 791 °C. In addition, the position of blocking layer in a 110 t ladle was measured by sand-collection and steel-pour methods, and the criterion temperatures of blocking layer in numerical simulation process were corrected. When the refining temperature is1600 °C and the containing time of molten steel is 120 min, the thickness of blocking layer is 130 mm, and the distance between the upper surface of blocking layer and the upper surface of nozzle brick is 154 mm. When the criterion temperatures are 919 °C and 428 °C, the numerical results can be used to confirm the position of blocking layer and the installation position of induction coil.展开更多
基金This work was financially supported by the National High-Tech Research and Development Program of China (No.2001AA339030),the National Natural Science Foundation of China (No.50334010) and the Ministry of Sciences and Technology of China.
文摘The thermal evolution of steel coil during cooling was simulated and investigated by the use of in-house Q-CSP software. The dependence of the thermal evolution of steel coil on cooling methods, temperature distribution of the strip before coiling, coil size and steel grades was also discussed. The study plays a significant role in helping steel makers to better understand and control the cooling process.
基金financially supported by the National Natural Science Foundation of China (Grant No. U1560207)
文摘Ambient temperature of induction coil is an important factor to influence the implementation of the electromagnetic induction-controlled automated steel-teeming(EICAST) technology. Meanwhile, it also affects the formation of Fe–C alloy blocking layer, which determines the length and installation position of induction coil. An experimental platform was designed to imitate actual working conditions in a ladle with the EICAST system. Ambient temperature of induction coil under high-temperature condition was measured to verify the accuracy of numerical result. After containing molten steel for 120 min and steel teeming for 40 min, the ambient temperature on the upper side of induction coil is 791 °C. In addition, the position of blocking layer in a 110 t ladle was measured by sand-collection and steel-pour methods, and the criterion temperatures of blocking layer in numerical simulation process were corrected. When the refining temperature is1600 °C and the containing time of molten steel is 120 min, the thickness of blocking layer is 130 mm, and the distance between the upper surface of blocking layer and the upper surface of nozzle brick is 154 mm. When the criterion temperatures are 919 °C and 428 °C, the numerical results can be used to confirm the position of blocking layer and the installation position of induction coil.