We solve two Markowitz optimization problems for the one-step financial model with a finite number of assets. In our results, the classical (inefficient) constraints are replaced by coherent measures of risk that are ...We solve two Markowitz optimization problems for the one-step financial model with a finite number of assets. In our results, the classical (inefficient) constraints are replaced by coherent measures of risk that are continuous from below. The methodology of proof requires optimization techniques based on functional analysis methods. We solve explicitly both problems in the important case of Tail Value at Risk.展开更多
采用资产组合损失变量描述风险,并基于损失分布的α-(上)分位数给出"期望巨额损失值"ES(expected shortfall)和"条件风险价值"CVaR(conditional value at risk)的定义。在一般损失分布下,通过直接计算说明了任一资...采用资产组合损失变量描述风险,并基于损失分布的α-(上)分位数给出"期望巨额损失值"ES(expected shortfall)和"条件风险价值"CVaR(conditional value at risk)的定义。在一般损失分布下,通过直接计算说明了任一资产组合损失变量的"期望巨额损失值"ES的定义与α-(上)分位数的选取无关;而且也通过直接计算证明了ES与CVaR两者的等价关系;进而通过构造出ES的概率测度族表示证明了ES是一致性风险度量方法。此外,还就相关问题,例如分位数、一致性风险度量、尾部条件期望TCE等,给出了一些有价值的注记。展开更多
文摘We solve two Markowitz optimization problems for the one-step financial model with a finite number of assets. In our results, the classical (inefficient) constraints are replaced by coherent measures of risk that are continuous from below. The methodology of proof requires optimization techniques based on functional analysis methods. We solve explicitly both problems in the important case of Tail Value at Risk.
文摘采用资产组合损失变量描述风险,并基于损失分布的α-(上)分位数给出"期望巨额损失值"ES(expected shortfall)和"条件风险价值"CVaR(conditional value at risk)的定义。在一般损失分布下,通过直接计算说明了任一资产组合损失变量的"期望巨额损失值"ES的定义与α-(上)分位数的选取无关;而且也通过直接计算证明了ES与CVaR两者的等价关系;进而通过构造出ES的概率测度族表示证明了ES是一致性风险度量方法。此外,还就相关问题,例如分位数、一致性风险度量、尾部条件期望TCE等,给出了一些有价值的注记。