Increasing the system capacity and spectral efficiency(SE)per unit bandwidth is one of the ultimate goals for data network designers,especially when using technologies compatible with current embedded fiber infrastruc...Increasing the system capacity and spectral efficiency(SE)per unit bandwidth is one of the ultimate goals for data network designers,especially when using technologies compatible with current embedded fiber infrastructures.Among these,the polarizationdivision-multiplexing(PDM)scheme,which supports two independent data channels on a single wavelength with orthogonal polarization states,has become a standard one in most state-of-art telecommunication systems.Currently,however,only two polarization states(that is,PDM)can be used,setting a barrier for further SE improvement.Assisted by coherent detection and digital signal processing,we propose and experimentally demonstrate a scheme for pseudo-PDM of four states(PPDM-4)by manipulation of four linearly polarized data channels with the same wavelength.Without any modification of the fiber link,we successfully transmit a 100-Gb s−1 PPDM-4 differential-phase-shift-keying signal over a 150-km single-mode fiber link.Such a method is expected to open new possibilities to fully explore the use of polarization freedom for capacity and SE improvement over existing fiber systems.展开更多
Nyquist wavelength-division multiplexing (N-WDM) allows high spectral efficiency (SE) in long-haul transmission systems. Compared to polarization-division multiplexing quadrature phase-shift keying (PDM-QPSK), m...Nyquist wavelength-division multiplexing (N-WDM) allows high spectral efficiency (SE) in long-haul transmission systems. Compared to polarization-division multiplexing quadrature phase-shift keying (PDM-QPSK), multilevel modulation, such as PDM 16 quadrature-amplitude modulation (16-QAM), is much more sensitive to intrachannel noise and interchannel linear crosstalk caused by N-WDM. We experimentally generate and transmit a 6 x 128 Gbit/s N-WDM PDM 16-QAM signal over 1200 km single-mode fiber (SMF)-28 with amplification provided by an erbium-doped fiber amplifier (EDFA) only. The net SE is 7.47 bit/s/Hz, which to the best of our knowledge is the highest SE for a signal with a bit rate beyond 100 Gbit/s using the PDM 16-QAM. Such SE was achieved by DSP pre-equalization of transmitter-side impairments and DSP post-equalization of channel and receiver-side impairments. Nyquist-band can be used in pre-equalization to enhance the tolerance of PDM 16-QAM to aggressive spectral shaping. The bit-error ratio (BER) for each of the 6 channels is smaller than the forward error correction (FEC) limit of 3.8 × 10-3 after 1200 km SMF-28 transmission.展开更多
This paper gives an overview of the generation and transmission of 450 Gb/s wavelengthdivision multiplexed (WDM) channels over the standard 50 GHz ITU grid at a net spectral efficiency (SE) of 8.4 b/s/Hz. The use ...This paper gives an overview of the generation and transmission of 450 Gb/s wavelengthdivision multiplexed (WDM) channels over the standard 50 GHz ITU grid at a net spectral efficiency (SE) of 8.4 b/s/Hz. The use of nearly ideal Nyquist pulse shaping, spectrallyefficient highorder modulation format, distributed Raman amplification, distributed compensation of RADM filtering effects, coherent equalization, and highcoding gain forward error correction (FEC) code may enable future 400G systems to operate over the standard 50 GFIz grid optical network.展开更多
基金supported by the Natural Science Foundation of China(Nos.61335005,61325023,61275068 and 61401378)the National Basic Research Program of China(2012CB315704)。
文摘Increasing the system capacity and spectral efficiency(SE)per unit bandwidth is one of the ultimate goals for data network designers,especially when using technologies compatible with current embedded fiber infrastructures.Among these,the polarizationdivision-multiplexing(PDM)scheme,which supports two independent data channels on a single wavelength with orthogonal polarization states,has become a standard one in most state-of-art telecommunication systems.Currently,however,only two polarization states(that is,PDM)can be used,setting a barrier for further SE improvement.Assisted by coherent detection and digital signal processing,we propose and experimentally demonstrate a scheme for pseudo-PDM of four states(PPDM-4)by manipulation of four linearly polarized data channels with the same wavelength.Without any modification of the fiber link,we successfully transmit a 100-Gb s−1 PPDM-4 differential-phase-shift-keying signal over a 150-km single-mode fiber link.Such a method is expected to open new possibilities to fully explore the use of polarization freedom for capacity and SE improvement over existing fiber systems.
文摘Nyquist wavelength-division multiplexing (N-WDM) allows high spectral efficiency (SE) in long-haul transmission systems. Compared to polarization-division multiplexing quadrature phase-shift keying (PDM-QPSK), multilevel modulation, such as PDM 16 quadrature-amplitude modulation (16-QAM), is much more sensitive to intrachannel noise and interchannel linear crosstalk caused by N-WDM. We experimentally generate and transmit a 6 x 128 Gbit/s N-WDM PDM 16-QAM signal over 1200 km single-mode fiber (SMF)-28 with amplification provided by an erbium-doped fiber amplifier (EDFA) only. The net SE is 7.47 bit/s/Hz, which to the best of our knowledge is the highest SE for a signal with a bit rate beyond 100 Gbit/s using the PDM 16-QAM. Such SE was achieved by DSP pre-equalization of transmitter-side impairments and DSP post-equalization of channel and receiver-side impairments. Nyquist-band can be used in pre-equalization to enhance the tolerance of PDM 16-QAM to aggressive spectral shaping. The bit-error ratio (BER) for each of the 6 channels is smaller than the forward error correction (FEC) limit of 3.8 × 10-3 after 1200 km SMF-28 transmission.
文摘This paper gives an overview of the generation and transmission of 450 Gb/s wavelengthdivision multiplexed (WDM) channels over the standard 50 GHz ITU grid at a net spectral efficiency (SE) of 8.4 b/s/Hz. The use of nearly ideal Nyquist pulse shaping, spectrallyefficient highorder modulation format, distributed Raman amplification, distributed compensation of RADM filtering effects, coherent equalization, and highcoding gain forward error correction (FEC) code may enable future 400G systems to operate over the standard 50 GFIz grid optical network.