4-Coumarate : coenzyme A Ilgase (4CL) Is one of the key enzymes In phenylpropanoid metabolism leading to series of phenollcs, Including water-soluble phenolic acids, which are important compounds determining the me...4-Coumarate : coenzyme A Ilgase (4CL) Is one of the key enzymes In phenylpropanoid metabolism leading to series of phenollcs, Including water-soluble phenolic acids, which are important compounds determining the medicinal quality of Danshen (Salvia miltiorrhiza Bunge), a traditional Chinese medicinal herb. To Investigate the function of 4CL in the biosynthesis of water-soluble phenolic acid in Danshen, we have cloned two cDNAs (Sm4CL1 and Sm4CL2) encoding divergent 4CL members by applying nested reverse transcrlptlon-polymerase chain reaction (RT-PCR) with degenerate primers followed by 5′/3′rapid amplification of cDNA ends (RACE) (Note, these sequence data have been submitted to the GenBank database under accession numbers AY237163 and AY237164). Either of the coding regions was inserted into a pRSET vector and a kinetic assay was performed with purified recombinant proteins. The substrate utilization profile of Sm4CL1 was distinct from that of Sm4CL2. The Km values of Sm4CL1 and Sm4CL2 to 4-coumarlc acid were (72.20±4.10) and (6.50±1.45) μmol/L, respectively. These results, In conjunction with Northern blotting and other information, imply that Sm4CL2 may play an Important role in the biosynthesis of watersoluble phenolic compounds, whereas Sm4CL1 may play a minor role in the pathway. Southern blotting analysis suggested that both Sm4CL1 and Sm4CL2 genes are present as a single copy and are located at different sites In the genome.展开更多
A simulated landfill anaerobic bioreactor was used to characterize the anaerobic biodegradation and biogas generation of organic waste which was mainly composed of residuals of vegetables and foods. We investigated th...A simulated landfill anaerobic bioreactor was used to characterize the anaerobic biodegradation and biogas generation of organic waste which was mainly composed of residuals of vegetables and foods. We investigated the dynamics of the coenzyme F420 activity and determined correlations between biogas yields, methane yields, methane concentration and coenzyme F420 activity. The experiment was carded out under different conditions from control without any treatment, addition of Fe^3+, microorganism inoculation to a combination of Fe3+ addition and inoculation at a temperature of 36±2℃. The experiment was lasted 120 d and coenzyme F420 activity was analyzed using ultraviolet spectrophotornetry. Experimental results indicated that activity of the coenzyme F420 treated by Fe and microorganism inoculation increased substantially. The waste treated by inoculation had the greatest increase. When the waste was treated by Fe^3+, inoculation and the combination of Fe^3+ and inoculation, biogas yields increased by 46.9%, 132.6% and 153.1%, respectively; while the methane yields increased 4, 97 and 98 times. Methane concentration varied between 0 and 6% in the control reactor, from 0 to 14% for waste treated by the addition of Fe^3+, from 0 to 59% for waste treated by inoculation and from 0 to 63% for waste treated by Fe^3+ addition and inoculation. Correlations between coenzyme F420 activity and biogas production, methane production and methane concentration proved to be positively significant (p〈0.05), except for the control. Consequently, coenzyme F420 activity could be used as an index for monitoring the activity of methanogens during anaerobic biodegradation of the organic fraction of municipal solid waste.展开更多
Stem cell transplantation has been proved a promising therapeutic instrument in intervertebral disc degeneration(IVDD).However,the elevation of oxidative stress in the degenerated region impairs the efficiency of mese...Stem cell transplantation has been proved a promising therapeutic instrument in intervertebral disc degeneration(IVDD).However,the elevation of oxidative stress in the degenerated region impairs the efficiency of mesenchymal stem cells(BMSCs)transplantation treatment via exaggeration of mitochondrial ROS and promotion of BMSCs apoptosis.Herein,we applied an emulsion-confined assembly method to encapsulate Coenzyme Q10(Co-Q10),a promising hydrophobic antioxidant which targets mitochondria ROS,into the lecithin micelles,which renders the insoluble Co-Q10 dispersible in water as stable colloids.These micelles are injectable,which displayed efficient ability to facilitate Co-Q10 to get into BMSCs in vitro,and exhibited prolonged release of Co-Q10 in intervertebral disc tissue of animal models.Compared to mere use of Co-Q10,the Co-Q10 loaded micelle possessed better bioactivities,which elevated the viability,restored mitochondrial structure as well as function,and enhanced production of ECM components in rat BMSCs.Moreover,it is demonstrated that the injection of this micelle with BMSCs retained disc height and alleviated IVDD in a rat needle puncture model.Therefore,these Co-Q10 loaded micelles play a protective role in cell survival and differentiation through antagonizing mitochondrial ROS,and might be a potential therapeutic agent for IVDD.展开更多
Cholesterol plays several structural and metabolic roles that are vital for human biology. It spreads along the entire plasma membrane of the cell, modulating fluidity and concentrating in specialized sphingolipid-ric...Cholesterol plays several structural and metabolic roles that are vital for human biology. It spreads along the entire plasma membrane of the cell, modulating fluidity and concentrating in specialized sphingolipid-rich domains called rafts and caveolae. Cholesterol is also a substrate for steroid hormones. However, too much cholesterol can lead to pathological pictures such as atherosclerosis, which is a consequence of the accumu- lation of cholesterol into the cells of the artery wall. The liver is considered to be the metabolic power station of mammalians, where cholesterol homeostasis relies on an intricate network of cellular processes whose deregulations can lead to several life-threatening pathologies, such as familial and age-related hypercholesterolemia. Cholesterol homeostasis maintenance is carried out by: biosynthesis, via 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity; uptake, through low density lipoprotein receptors (LDLr); lipoprotein release in the blood; storage by esterification; and degradation and conversion into bile acids. Both HMGR and LDLr are transcribed as a function of cellular sterol amount by a family of transcription factors called sterol regulatory element binding proteins that are responsible for the maintenance of cholesterol homeostasis through an intricate mechanism of regulation. Cholesterol obtained by hepatic de novo synthesis can be esterified and incorporated into apolipoprotein B-100-containing very low density lipoproteins, which are then secreted into the bloodstream for transport to peripheral tissues. Moreover, dietary cholesterol is transferred from the intestine to the liver by high density lipoproteins (HDLs); all HDL particles are internalized in the liver, interacting with the hepatic scavenger receptor (SR-B1). Here we provide an updated overview of liver cholesterol metabolism regulation and deregulation and the causes of cholesterol metabolism-related diseases. Moreover, current pharmacological treatment and novel hypocho-lesterolemic strategie展开更多
基金Supported by the National Natural Science Foundation of China (30300447).The authors thank Dr Chen Yongning (China Innovation Centre for Drug Development, HK) for useful suggestions and support. The authors also thank to Dr Fanya Zeng and Miss Charis Chan (Department of Zoology, University of Hong Kong) for technical assistance.
文摘4-Coumarate : coenzyme A Ilgase (4CL) Is one of the key enzymes In phenylpropanoid metabolism leading to series of phenollcs, Including water-soluble phenolic acids, which are important compounds determining the medicinal quality of Danshen (Salvia miltiorrhiza Bunge), a traditional Chinese medicinal herb. To Investigate the function of 4CL in the biosynthesis of water-soluble phenolic acid in Danshen, we have cloned two cDNAs (Sm4CL1 and Sm4CL2) encoding divergent 4CL members by applying nested reverse transcrlptlon-polymerase chain reaction (RT-PCR) with degenerate primers followed by 5′/3′rapid amplification of cDNA ends (RACE) (Note, these sequence data have been submitted to the GenBank database under accession numbers AY237163 and AY237164). Either of the coding regions was inserted into a pRSET vector and a kinetic assay was performed with purified recombinant proteins. The substrate utilization profile of Sm4CL1 was distinct from that of Sm4CL2. The Km values of Sm4CL1 and Sm4CL2 to 4-coumarlc acid were (72.20±4.10) and (6.50±1.45) μmol/L, respectively. These results, In conjunction with Northern blotting and other information, imply that Sm4CL2 may play an Important role in the biosynthesis of watersoluble phenolic compounds, whereas Sm4CL1 may play a minor role in the pathway. Southern blotting analysis suggested that both Sm4CL1 and Sm4CL2 genes are present as a single copy and are located at different sites In the genome.
基金Projects 40372069 supported by the National Natural Science Foundation of ChinaNCET-05-0479 by the Program for New Century Excellent Talents in University0F4506 by the Science and Technology Foundation of China University of Mining and Technology
文摘A simulated landfill anaerobic bioreactor was used to characterize the anaerobic biodegradation and biogas generation of organic waste which was mainly composed of residuals of vegetables and foods. We investigated the dynamics of the coenzyme F420 activity and determined correlations between biogas yields, methane yields, methane concentration and coenzyme F420 activity. The experiment was carded out under different conditions from control without any treatment, addition of Fe^3+, microorganism inoculation to a combination of Fe3+ addition and inoculation at a temperature of 36±2℃. The experiment was lasted 120 d and coenzyme F420 activity was analyzed using ultraviolet spectrophotornetry. Experimental results indicated that activity of the coenzyme F420 treated by Fe and microorganism inoculation increased substantially. The waste treated by inoculation had the greatest increase. When the waste was treated by Fe^3+, inoculation and the combination of Fe^3+ and inoculation, biogas yields increased by 46.9%, 132.6% and 153.1%, respectively; while the methane yields increased 4, 97 and 98 times. Methane concentration varied between 0 and 6% in the control reactor, from 0 to 14% for waste treated by the addition of Fe^3+, from 0 to 59% for waste treated by inoculation and from 0 to 63% for waste treated by Fe^3+ addition and inoculation. Correlations between coenzyme F420 activity and biogas production, methane production and methane concentration proved to be positively significant (p〈0.05), except for the control. Consequently, coenzyme F420 activity could be used as an index for monitoring the activity of methanogens during anaerobic biodegradation of the organic fraction of municipal solid waste.
基金This work was supported by National Natural Science Foundation of China(Grant No.82072478 to Yunpeng Zhao)Shandong Provincial Natural Science Foundation(Grant No.ZR2020YQ54,ZR019MH05 to Yunpeng Zhao)+4 种基金National Natural Science Foundation of China(Grant No.81874022,82172483 to Xinyu Liu)National Natural Science Foundation of China(Grant No.81972128to Xuesong Zhang)Application of Clinical Features of Capital City of Science and Technology Commission China BEIJING Special subject(Z181100001718180 to Xuesong Zhang)National Nature Science Foundation(82102522 to Lianlei Wang)Shandong Natural Science Foundation(ZR202102210113 to Lianlei Wang)and Shandong Province Taishan Scholar Project.
文摘Stem cell transplantation has been proved a promising therapeutic instrument in intervertebral disc degeneration(IVDD).However,the elevation of oxidative stress in the degenerated region impairs the efficiency of mesenchymal stem cells(BMSCs)transplantation treatment via exaggeration of mitochondrial ROS and promotion of BMSCs apoptosis.Herein,we applied an emulsion-confined assembly method to encapsulate Coenzyme Q10(Co-Q10),a promising hydrophobic antioxidant which targets mitochondria ROS,into the lecithin micelles,which renders the insoluble Co-Q10 dispersible in water as stable colloids.These micelles are injectable,which displayed efficient ability to facilitate Co-Q10 to get into BMSCs in vitro,and exhibited prolonged release of Co-Q10 in intervertebral disc tissue of animal models.Compared to mere use of Co-Q10,the Co-Q10 loaded micelle possessed better bioactivities,which elevated the viability,restored mitochondrial structure as well as function,and enhanced production of ECM components in rat BMSCs.Moreover,it is demonstrated that the injection of this micelle with BMSCs retained disc height and alleviated IVDD in a rat needle puncture model.Therefore,these Co-Q10 loaded micelles play a protective role in cell survival and differentiation through antagonizing mitochondrial ROS,and might be a potential therapeutic agent for IVDD.
文摘Cholesterol plays several structural and metabolic roles that are vital for human biology. It spreads along the entire plasma membrane of the cell, modulating fluidity and concentrating in specialized sphingolipid-rich domains called rafts and caveolae. Cholesterol is also a substrate for steroid hormones. However, too much cholesterol can lead to pathological pictures such as atherosclerosis, which is a consequence of the accumu- lation of cholesterol into the cells of the artery wall. The liver is considered to be the metabolic power station of mammalians, where cholesterol homeostasis relies on an intricate network of cellular processes whose deregulations can lead to several life-threatening pathologies, such as familial and age-related hypercholesterolemia. Cholesterol homeostasis maintenance is carried out by: biosynthesis, via 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity; uptake, through low density lipoprotein receptors (LDLr); lipoprotein release in the blood; storage by esterification; and degradation and conversion into bile acids. Both HMGR and LDLr are transcribed as a function of cellular sterol amount by a family of transcription factors called sterol regulatory element binding proteins that are responsible for the maintenance of cholesterol homeostasis through an intricate mechanism of regulation. Cholesterol obtained by hepatic de novo synthesis can be esterified and incorporated into apolipoprotein B-100-containing very low density lipoproteins, which are then secreted into the bloodstream for transport to peripheral tissues. Moreover, dietary cholesterol is transferred from the intestine to the liver by high density lipoproteins (HDLs); all HDL particles are internalized in the liver, interacting with the hepatic scavenger receptor (SR-B1). Here we provide an updated overview of liver cholesterol metabolism regulation and deregulation and the causes of cholesterol metabolism-related diseases. Moreover, current pharmacological treatment and novel hypocho-lesterolemic strategie