Proteomics is the study of proteins and their interactions in a cell. With the successful completion of the Human Cenome Project, it comes the postgenome era when the proteomics technology is emerging. This paper stud...Proteomics is the study of proteins and their interactions in a cell. With the successful completion of the Human Cenome Project, it comes the postgenome era when the proteomics technology is emerging. This paper studies protein molecule from the algebraic point of view. The algebraic system (∑, +, *) is introduced, where ∑ is the set of 64 codons. According to the characteristics of (∑, +, *), a novel quasi-amino acids code classification method is introduced and the corresponding algebraic operation table over the set ZU of the 16 kinds of quasi-amino acids is established. The internal relation is revealed about quasi-amino acids. The results show that there exist some very close correlations between the properties of the quasi-amino acids and the codon. All these correlation relationships may play an important part in establishing the logic relationship between codons and the quasi-amino acids during the course of life origination. According to Ma F et al (2003 J. Anhui Agricultural University 30 439), the corresponding relation and the excellent properties about amino acids code are very difficult to observe. The present paper shows that (ZU, +,×) is a field. Furthermore, the operational results display that the eodon tga has different property from other stop codons. In fact, in the mitochondrion from human and ox genomic codon, tga is just tryptophane, is not the stop codon like in other genetic code, it is the case of the Chen W C et al (2002 Acta Biophysiea Siniea 18(1) 87). The present theory avoids some inexplicable events of the 20 kinds of amino acids code, in other words it solves the problem of 'the 64 codon assignments of mRNA to amino acids is probably completely wrong' proposed by Yang (2006 Progress in Modern Biomedicine 6 3).展开更多
基金Project supported in part by the International Technology Collaboration Research Program of China (Grant No 2007DFA706700)
文摘Proteomics is the study of proteins and their interactions in a cell. With the successful completion of the Human Cenome Project, it comes the postgenome era when the proteomics technology is emerging. This paper studies protein molecule from the algebraic point of view. The algebraic system (∑, +, *) is introduced, where ∑ is the set of 64 codons. According to the characteristics of (∑, +, *), a novel quasi-amino acids code classification method is introduced and the corresponding algebraic operation table over the set ZU of the 16 kinds of quasi-amino acids is established. The internal relation is revealed about quasi-amino acids. The results show that there exist some very close correlations between the properties of the quasi-amino acids and the codon. All these correlation relationships may play an important part in establishing the logic relationship between codons and the quasi-amino acids during the course of life origination. According to Ma F et al (2003 J. Anhui Agricultural University 30 439), the corresponding relation and the excellent properties about amino acids code are very difficult to observe. The present paper shows that (ZU, +,×) is a field. Furthermore, the operational results display that the eodon tga has different property from other stop codons. In fact, in the mitochondrion from human and ox genomic codon, tga is just tryptophane, is not the stop codon like in other genetic code, it is the case of the Chen W C et al (2002 Acta Biophysiea Siniea 18(1) 87). The present theory avoids some inexplicable events of the 20 kinds of amino acids code, in other words it solves the problem of 'the 64 codon assignments of mRNA to amino acids is probably completely wrong' proposed by Yang (2006 Progress in Modern Biomedicine 6 3).