External carbon source addition is one of the effective methods for the treatment of wastewater with low carbon to nitrogen ratio(C/N). Compared with fast-release liquid carbon sources, slow-release solid carbon sourc...External carbon source addition is one of the effective methods for the treatment of wastewater with low carbon to nitrogen ratio(C/N). Compared with fast-release liquid carbon sources, slow-release solid carbon sources are more suitable for the denitrification process. A novel slow-release solid carbon source(corncob-polyvinyl alcohol sodium alginatepoly-caprolactone, i.e. CPSP) was prepared using corn cob(CC) and poly-caprolactone with polyvinyl alcohol sodium alginate as hybrid scaffold. The physical properties and carbon release characteristics of CPSP and three other carbon sources were compared. CPSP had stable framework and good carbon release performance, which followed the second order release equation. The formic acid, acetic acid, propionic acid and butyric acid released from CPSP accounted for 8.27% ± 1.66 %, 56.48% ± 3.71 %, 18.46% ± 2.69% and 16.79% ± 3.02% of the total released acids respectively. The start-up period of CPSP was shorter than that of the other carbon sources in denitrification experiment, and no COD pollution was observed in the start-up phase(25–72 h) and stable phase(73–240 hr). The composition and structure of the dissolved organic compounds released by CPSP and other carbon sources were analyzed by UV-Vis absorption spectroscopy and three-dimensional fluorescence spectroscopy,which indicated that CPSP was more suitable for denitrification than the other studied carbon sources.展开更多
针对LED高光效、高显色指数的要求,在分析LED光学性能的基础上,采用板上芯片(COB,Chip on Board)技术研究了表面涂覆硅胶量对COB白光LED的光通量、光效、色温和显色指数的影响,并提出一种高光效、高显色指数、低色温的白光LED封装方案,...针对LED高光效、高显色指数的要求,在分析LED光学性能的基础上,采用板上芯片(COB,Chip on Board)技术研究了表面涂覆硅胶量对COB白光LED的光通量、光效、色温和显色指数的影响,并提出一种高光效、高显色指数、低色温的白光LED封装方案,提高了COB白光LED的出光效率,实现了特定的光学分布,最终实现14W COB封装结构下的白光LED,在电流密度为30A/cm2时,其色温、显色指数及光效分别为4 900K、82和125lm/W。展开更多
针对LED高光效、低功耗的要求,在分析LED光学性能的基础上,采用了COB(chip on board)即板上芯片封装技术。研究了不同电流下和点亮不同时间后,分析其LED光通量、光效和色温。研究分析影响LED光学性能的因素并进行测试。结果表明,用两...针对LED高光效、低功耗的要求,在分析LED光学性能的基础上,采用了COB(chip on board)即板上芯片封装技术。研究了不同电流下和点亮不同时间后,分析其LED光通量、光效和色温。研究分析影响LED光学性能的因素并进行测试。结果表明,用两种色温接近3 000 K的样品,电流由500 m A增大到900 m A,色温升高了1.685%、2.626%,光通量也随着电流的变大而升高68.532%、84.625%,但相反光效却降低了13.535%、9.971%;而在电流保持不变的情况下,点亮的时间由0~1 min、0~5 min、0~10 min,其色温分别上升了0.537%、1.209%、2.384%;0.369%、1.104%、2.943%,同时,光通量分别降低1.474%、4.855%、7.493%;2.073%、3.859%、7.793%,光效也分别降低2.527%、4.617%、6.671%;2.171%、4.903%、7.579%。实验发现,电流与点亮时间直接影响LED光学性能。展开更多
基金supported by the Special Funds for the National Key Research and Development Program of China (No. 2019YFC0408602)the National Major Science and Technology Program for Water Pollution Control and Treatment, China (No. 2017ZX07401003-05-01)the Basic Scientific Research Operating Expenses of business of Central Public Research Institutes (No. 2020YSKY-011)。
文摘External carbon source addition is one of the effective methods for the treatment of wastewater with low carbon to nitrogen ratio(C/N). Compared with fast-release liquid carbon sources, slow-release solid carbon sources are more suitable for the denitrification process. A novel slow-release solid carbon source(corncob-polyvinyl alcohol sodium alginatepoly-caprolactone, i.e. CPSP) was prepared using corn cob(CC) and poly-caprolactone with polyvinyl alcohol sodium alginate as hybrid scaffold. The physical properties and carbon release characteristics of CPSP and three other carbon sources were compared. CPSP had stable framework and good carbon release performance, which followed the second order release equation. The formic acid, acetic acid, propionic acid and butyric acid released from CPSP accounted for 8.27% ± 1.66 %, 56.48% ± 3.71 %, 18.46% ± 2.69% and 16.79% ± 3.02% of the total released acids respectively. The start-up period of CPSP was shorter than that of the other carbon sources in denitrification experiment, and no COD pollution was observed in the start-up phase(25–72 h) and stable phase(73–240 hr). The composition and structure of the dissolved organic compounds released by CPSP and other carbon sources were analyzed by UV-Vis absorption spectroscopy and three-dimensional fluorescence spectroscopy,which indicated that CPSP was more suitable for denitrification than the other studied carbon sources.
文摘针对LED高光效、高显色指数的要求,在分析LED光学性能的基础上,采用板上芯片(COB,Chip on Board)技术研究了表面涂覆硅胶量对COB白光LED的光通量、光效、色温和显色指数的影响,并提出一种高光效、高显色指数、低色温的白光LED封装方案,提高了COB白光LED的出光效率,实现了特定的光学分布,最终实现14W COB封装结构下的白光LED,在电流密度为30A/cm2时,其色温、显色指数及光效分别为4 900K、82和125lm/W。
文摘针对LED高光效、低功耗的要求,在分析LED光学性能的基础上,采用了COB(chip on board)即板上芯片封装技术。研究了不同电流下和点亮不同时间后,分析其LED光通量、光效和色温。研究分析影响LED光学性能的因素并进行测试。结果表明,用两种色温接近3 000 K的样品,电流由500 m A增大到900 m A,色温升高了1.685%、2.626%,光通量也随着电流的变大而升高68.532%、84.625%,但相反光效却降低了13.535%、9.971%;而在电流保持不变的情况下,点亮的时间由0~1 min、0~5 min、0~10 min,其色温分别上升了0.537%、1.209%、2.384%;0.369%、1.104%、2.943%,同时,光通量分别降低1.474%、4.855%、7.493%;2.073%、3.859%、7.793%,光效也分别降低2.527%、4.617%、6.671%;2.171%、4.903%、7.579%。实验发现,电流与点亮时间直接影响LED光学性能。