Coastal regions are threatened by natural processes, such as erosion driven by storm surges and the effect of jetties, as well as by human behavior. The coastline of the Yellow River Delta(YRD) was monitored using the...Coastal regions are threatened by natural processes, such as erosion driven by storm surges and the effect of jetties, as well as by human behavior. The coastline of the Yellow River Delta(YRD) was monitored using the general high-tide line method, which combines Remote sensing(RS) and geographic information system(GIS) technology, using multi-spectral scanner(MSS), thematic mapper(TM), and enhanced thematic mapper plus(ETM+) images of the YRD from 1976 to 2014 as a data source. The results demonstrated that the shape and length of the YRD coastline has changed dramatically since 1976. The course of the Diaokouhe channel has resulted in mainly inland erosion in the north, and is primarily marine erosion; therefore, it was termed an erosion-type estuary. However, the coastline of the Qingshuigou course has moved seaward, demonstrating an accretion stage, and was therefore termed an accretion-type estuary. The coastline advanced forward before 1997 and shrank after 2003 in the southern part of the river mouth, which was due to the shift in the river mouth in 1996. It has continually extended outward in the northern part of the river mouth from 2003 onward. The coastline in the southern part of the river mouth has moved randomly, with the occurrence of both erosion and sedimentation caused by land reclamation and sea wave intrusion. In most cases, the coastline has extended offshore, especially in the northern part of the river mouth. The YRD coastline has changed frequently and rapidly from 1992 to 2014. The river mouth channel, river water and sediments, and precipitation were the major factors affecting the YRD. The YRD coastline was mainly in an accretion stage during flow periods. The erosion rate decreased and tended to be stable during a dry period. The coastline was basically stable when dry periods occurred over a long period. The location of Yellow River ports and sea erosion were the main factors driving coastline changes. The coastline was mainly influenced by the flow path of the Yellow River, with rece展开更多
Based on measured data of coastline and bathometry, processed by softwares of Surfer and Mapinfo, and combined with sediment loads in different phases at Lijin gauging station, temporal and spatial evolution of coastl...Based on measured data of coastline and bathometry, processed by softwares of Surfer and Mapinfo, and combined with sediment loads in different phases at Lijin gauging station, temporal and spatial evolution of coastline and subaqueous geomorphology in muddy coast of the Yellow River Delta is analyzed. The results show that ~68% of sediments were delivered by the Yellow River deposited around the river mouth and in the littoral area from 1953 to 2000. Coastline in different coasts had distinctive changes in response to shifts of river course. Coastline was stable in the west of the Diaokou river mouth. Coastline from the east of the Diaokou river mouth to the north of the Gudong oilfield had experienced siltation, then serious erosion, and finally kept stable with sea walls conservation. Generally, coastline of the survived river mouth of the Qingshuigou river course stretched seaward, whereas the south side of sand spit at the Qingshuigou old river mouth was eroded after the Yellow River inpouring near the position at the Qing 8. The subaqueous geomorphology off the survived river mouth exhibited siltation from 1976 to 1996, with flat topset beds and steeper foreset beds. From 1996 to 2005, the subaqueous geomorphology off the Qingshuigou old river mouth was eroded in the topset and foreset beds, but silted in the bottomset beds. The subaqueous geomorphology off the new river mouth sequentially performed siltation with small degree compared to that of 1976-1996.展开更多
In studying sand beach erosion and protection tactics in Liaoning Province, the authors calculated the wavedata of 27 a Period (1963-1991) at Bayuquan Observation Station in Liaodong Gulf. Together with the beach leve...In studying sand beach erosion and protection tactics in Liaoning Province, the authors calculated the wavedata of 27 a Period (1963-1991) at Bayuquan Observation Station in Liaodong Gulf. Together with the beach levellingsand some simple marking stakes monitoring and by having the aid of local annals, the paper analysed the present situationsof the coastline and the causes of sand coastal recession and serious consequences, and then discussed the dynamic processof alongshore sand transport. Simultaneously, based on alongshore sand transport model, oneline cut-and-fill theory anddynamical water model(sea level rise), the authors preliminary estimated beach process for the future in the area.Recently, the coastline is being eroded and 2/3 of the sand coast is subjected to erosion, which the recession rate ofthe individual sector exceed 7. 0 m/a. Coastal erosion has threatened villages, roads, factories and tourist resources. Sealevel rises and the decreasing amount of materials by rivers discharged into the sea and the activities of man, made coast line recession rate accelerate, and cause a great loss of land in the area.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41602356)China Postdoctoral Science Foundation(No.2017M622240)+2 种基金Key Research and Development Plan of Shandong Province(No.GG201712050002)Geological Exploration Fund of Shandong Province(No.2013(55),2016(7))Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals Open Fund(No.DMSM2018024)
文摘Coastal regions are threatened by natural processes, such as erosion driven by storm surges and the effect of jetties, as well as by human behavior. The coastline of the Yellow River Delta(YRD) was monitored using the general high-tide line method, which combines Remote sensing(RS) and geographic information system(GIS) technology, using multi-spectral scanner(MSS), thematic mapper(TM), and enhanced thematic mapper plus(ETM+) images of the YRD from 1976 to 2014 as a data source. The results demonstrated that the shape and length of the YRD coastline has changed dramatically since 1976. The course of the Diaokouhe channel has resulted in mainly inland erosion in the north, and is primarily marine erosion; therefore, it was termed an erosion-type estuary. However, the coastline of the Qingshuigou course has moved seaward, demonstrating an accretion stage, and was therefore termed an accretion-type estuary. The coastline advanced forward before 1997 and shrank after 2003 in the southern part of the river mouth, which was due to the shift in the river mouth in 1996. It has continually extended outward in the northern part of the river mouth from 2003 onward. The coastline in the southern part of the river mouth has moved randomly, with the occurrence of both erosion and sedimentation caused by land reclamation and sea wave intrusion. In most cases, the coastline has extended offshore, especially in the northern part of the river mouth. The YRD coastline has changed frequently and rapidly from 1992 to 2014. The river mouth channel, river water and sediments, and precipitation were the major factors affecting the YRD. The YRD coastline was mainly in an accretion stage during flow periods. The erosion rate decreased and tended to be stable during a dry period. The coastline was basically stable when dry periods occurred over a long period. The location of Yellow River ports and sea erosion were the main factors driving coastline changes. The coastline was mainly influenced by the flow path of the Yellow River, with rece
基金National Natural Science Foundation of China, No.41201006
文摘Based on measured data of coastline and bathometry, processed by softwares of Surfer and Mapinfo, and combined with sediment loads in different phases at Lijin gauging station, temporal and spatial evolution of coastline and subaqueous geomorphology in muddy coast of the Yellow River Delta is analyzed. The results show that ~68% of sediments were delivered by the Yellow River deposited around the river mouth and in the littoral area from 1953 to 2000. Coastline in different coasts had distinctive changes in response to shifts of river course. Coastline was stable in the west of the Diaokou river mouth. Coastline from the east of the Diaokou river mouth to the north of the Gudong oilfield had experienced siltation, then serious erosion, and finally kept stable with sea walls conservation. Generally, coastline of the survived river mouth of the Qingshuigou river course stretched seaward, whereas the south side of sand spit at the Qingshuigou old river mouth was eroded after the Yellow River inpouring near the position at the Qing 8. The subaqueous geomorphology off the survived river mouth exhibited siltation from 1976 to 1996, with flat topset beds and steeper foreset beds. From 1996 to 2005, the subaqueous geomorphology off the Qingshuigou old river mouth was eroded in the topset and foreset beds, but silted in the bottomset beds. The subaqueous geomorphology off the new river mouth sequentially performed siltation with small degree compared to that of 1976-1996.
文摘In studying sand beach erosion and protection tactics in Liaoning Province, the authors calculated the wavedata of 27 a Period (1963-1991) at Bayuquan Observation Station in Liaodong Gulf. Together with the beach levellingsand some simple marking stakes monitoring and by having the aid of local annals, the paper analysed the present situationsof the coastline and the causes of sand coastal recession and serious consequences, and then discussed the dynamic processof alongshore sand transport. Simultaneously, based on alongshore sand transport model, oneline cut-and-fill theory anddynamical water model(sea level rise), the authors preliminary estimated beach process for the future in the area.Recently, the coastline is being eroded and 2/3 of the sand coast is subjected to erosion, which the recession rate ofthe individual sector exceed 7. 0 m/a. Coastal erosion has threatened villages, roads, factories and tourist resources. Sealevel rises and the decreasing amount of materials by rivers discharged into the sea and the activities of man, made coast line recession rate accelerate, and cause a great loss of land in the area.