We address the bodyguard allocation problem (BAP), an optimization problem that illustrates the conflict of interest between two classes of processes with contradictory preferences within a distributed system. While...We address the bodyguard allocation problem (BAP), an optimization problem that illustrates the conflict of interest between two classes of processes with contradictory preferences within a distributed system. While a class of processes prefers to minimize its distance to a particular process called the root, the other class prefers to maximize it; at the same time, all the processes seek to build a communication spanning tree with the maximum social welfare. The two state-of-the-art algorithms for this problem always guarantee the generation of a spanning tree that satisfies a condition of Nash equilibrium in the system; however, such a tree does not necessarily produce the maximum social welfare. In this paper, we propose a two-player coalition cooperative scheme for BAP, which allows some processes to perturb or break a Nash equilibrium to find another one with a better social welfare. By using this cooperative scheme, we propose a new algorithm called FFC-BAPs for BAP. We present both theoretical and empirical analyses which show that this algorithm produces better quality approximate solutions than former algorithms for BAP.展开更多
In this paper, we present a non-transferable utility coalition graph game (NTU-CGG) based resource allocation scheme with relay selection for a downlink orthogonal frequency division multiplexing (OFDMA) based cog...In this paper, we present a non-transferable utility coalition graph game (NTU-CGG) based resource allocation scheme with relay selection for a downlink orthogonal frequency division multiplexing (OFDMA) based cognitive radio networks to maximize both system throughput and system faimess. In this algorithm, with the assistance of others SUs, SUs with less available channels to improve their throughput and fairness by forming a directed tree graph according to spectrum availability and traffic demands of SUs. So this scheme can effectively exploit both space and frequency diversity of the system. Performance results show that, NTU-CGG significantly improves system faimess level while not reducing the throughput comparing with other existing algorithms.展开更多
文摘We address the bodyguard allocation problem (BAP), an optimization problem that illustrates the conflict of interest between two classes of processes with contradictory preferences within a distributed system. While a class of processes prefers to minimize its distance to a particular process called the root, the other class prefers to maximize it; at the same time, all the processes seek to build a communication spanning tree with the maximum social welfare. The two state-of-the-art algorithms for this problem always guarantee the generation of a spanning tree that satisfies a condition of Nash equilibrium in the system; however, such a tree does not necessarily produce the maximum social welfare. In this paper, we propose a two-player coalition cooperative scheme for BAP, which allows some processes to perturb or break a Nash equilibrium to find another one with a better social welfare. By using this cooperative scheme, we propose a new algorithm called FFC-BAPs for BAP. We present both theoretical and empirical analyses which show that this algorithm produces better quality approximate solutions than former algorithms for BAP.
基金supported by the National Natural Science Funds of China for Young Scholar(61001115)the Beijing Natural Science Foundation of China(4102044)the National Natural Science Foundation of China(61271182)
文摘In this paper, we present a non-transferable utility coalition graph game (NTU-CGG) based resource allocation scheme with relay selection for a downlink orthogonal frequency division multiplexing (OFDMA) based cognitive radio networks to maximize both system throughput and system faimess. In this algorithm, with the assistance of others SUs, SUs with less available channels to improve their throughput and fairness by forming a directed tree graph according to spectrum availability and traffic demands of SUs. So this scheme can effectively exploit both space and frequency diversity of the system. Performance results show that, NTU-CGG significantly improves system faimess level while not reducing the throughput comparing with other existing algorithms.