Total 138 coal samples and 14 parting samples were taken from the No. 6 Seam of the Jungar Coalfield, Inner Mongolia. These samples were analysed by optical microscopy, sequential chemical extraction procedure (SCEP...Total 138 coal samples and 14 parting samples were taken from the No. 6 Seam of the Jungar Coalfield, Inner Mongolia. These samples were analysed by optical microscopy, sequential chemical extraction procedure (SCEP), inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRD), and scanning electron microscope in conjunction with an energy-dispersive X-ray spectrometer (SEM-EDX) analysis. The results indicate that the Li contents have reached the industrial grade of the coal associated Li deposit, and the total Li reserves have reached 2406600 tons, that is, 5157000 tons Li2O in the No. 6 seam in the Jungar Coalfield. The sequential chemical extraction procedure results suggest that the Li concentration is mainly related to inorganic matter. The minerals in the coals consist of kaolinite, boehmite, chlorite-group mineral, quartz, calcite, pyrite, siderite and amorphous clay material. Some Li could be absorbed by clay minerals in the Li-bearing coal seam. The chlorite phase?could be?most likely the host for a part of Li. The Yinshan Oldland should be the most possible source of Li of the coal.展开更多
Mineralogy and geochemistry of the four main workable coal seams (No.6, No.7, No.8, and No.11) of Late Permian age from the Songzao Coalfield, Chongqing, Southwest China, were examined using in- ductively coupled plas...Mineralogy and geochemistry of the four main workable coal seams (No.6, No.7, No.8, and No.11) of Late Permian age from the Songzao Coalfield, Chongqing, Southwest China, were examined using in- ductively coupled plasma-mass spectrometry (ICP-MS), X-ray fluorescence spectrometry (XRF), cold-vapor absorption spectrometry (CV-AAS), ion-selective electrode (ISE), scanning electron mi- croscopy equipped with an energy-dispersive X-ray spectrometer (SEM-EDX), and X-ray diffraction analysis (XRD). The results showed that the main workable No.8 Coal that accounts for about 60% of the total coal reserves in the Songzao Coalfield was not enriched in hazardous trace elements. The No.11 Coal has high concentrations of alkaline elements, Be (9.14 μg/g), Sc (12.9 μg/g), Ti (9508 μg/g), Mn (397 μg/g), Co (23.7 μg/g), Cu (108 μg/g), Zn (123 μg/g), Ga (32 μg/g), Zr (1304 μg/g), Nb (169 μg/g), Hf (32.7 μg/g), Ta (11.4 μg/g), W (24.8 μg/g), Hg (0.28 μg/g), Pb (28.1 μg/g), Th (24.1 μg/g), and rare earth elements (509.62 μg/g). The concentration of Nb and Ta in the No. 11 Coal is higher than the industrial grade, and their potential utilization should be further studied. Besides pyrite, quartz, calcite, and clay minerals, trace minerals including chalcopyrite, marcasite, siderite, albite, mixed-layer clay minerals of illite and smectite, monazite, apatite, anatase, chlorite, and gypsum were found in the No.11 Coal. It should be noted that alabandite of hydrothermal origin and anatase occurring as cement were identi- fied in coal. In addition, the clayey microbands derived from alkaline volcanic ashes were identified in the coal. The dominant compositions of these clayey microbands were mixed-layer clay minerals of illite and smectite, which were interlayered with organic bands. The modes of occurrence of alkaline volcanic ash bands indicate that the volcanic activities were characterized by the multiple eruptions, short time interval and small scale for each eruption during peat accumulation. The alkaline volcanic a展开更多
This paper discussed the petrographic characteristics of No.6 coal from the Xiaoyugou mine,Jungar Coalfield,Ordos Basin,China.10 samples(7 coal,1 parting mudstone and 2 floor mudstone)were analysed by microscopical an...This paper discussed the petrographic characteristics of No.6 coal from the Xiaoyugou mine,Jungar Coalfield,Ordos Basin,China.10 samples(7 coal,1 parting mudstone and 2 floor mudstone)were analysed by microscopical and geochemical methods.Four maceral compositions and several associated elements parameters were selected as indicators and corresponding diagrams were drawn to explicate the sedimentary environment.The results indicate that the maceral is dominated by vitrinite and minerals are mainly kaolinite in the No.6 coal.The sedimentary facies vary from barrier island system to tidal-flat which is a deposition process of water body shallowing and the coal-forming plants are herbs and woody plants formed in swamps.展开更多
The geothermal history and the tectonic subsidence history of the Huaibei-Huainan coalfields were reconstructed by using the vitrinite reflectance data, and their correlative restriction on coalbed gas generation of H...The geothermal history and the tectonic subsidence history of the Huaibei-Huainan coalfields were reconstructed by using the vitrinite reflectance data, and their correlative restriction on coalbed gas generation of Huaibei-Huainan coalfields and Qinshui coal basin was discussed. The burial, thermal, and maturity histories of are similar between Huaibei coalfield and Huainan coalfield, obviously different from those of Qinshui coal basin. Based on the tectono-thermal evolution characters of Huaibei-Huainan coalfields and Qinshui basin, the process of coalbed gas generation can be divided into three stages: (1) Dur- ing Early Mesozoic, both in Huaibei-Huainan and Qinshui, the buried depth of Permian coal seams increased rapidly, which resulted in strong metamorphism and high burial temperature of coal seams. At this stage, the coal rank was mainly fat coal, and locally reached coking coal. These created an environment favoring the generation of thermogenic gas. (2) From Late Ju- rassic to Cretaceous, in the areas of Huaibei-Hualnan, the strata suffered from erosion and the crust became thinning, and the Permian coal-bearing strata were uplifted to surface. At this stage, the thermogenic gas mostly escaped. Conversely, in Qinshui basin, the cover strata of coal seams kept intact during this stage, and the thermogenic gas were mostly preserved. Furthermore, with the interaction of magmatism, the burial temperature of coal seams reached higher peak value, and it was suitable for the secondary generation of thermogenic gas. (3) From Paleogene onward, in area of Huainan-Huaibei, the maturity of coal and burial temperature were propitious to the generation of secondary biogenic gases. However, in Qinshui basin, the maturity of coal went against genesis of second biogenic gas or thermogenic gas. By comparison, Huaibei-Huainan coalfields are dominated by thermogenic gas with a significant biogenic gas and hydrodynamic overprint, whereas Qinshui basin is dominated mainly by thermogenic gas.展开更多
Total of 23 bench samples were taken from the No. 7 Coal of Iqe Coalfield, Qinghai Province, China, following Chinese Standard Method GB/T 482-2008 (2008). These samples were analyzed by powder X-ray diffraction (...Total of 23 bench samples were taken from the No. 7 Coal of Iqe Coalfield, Qinghai Province, China, following Chinese Standard Method GB/T 482-2008 (2008). These samples were analyzed by powder X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP- MS) and X-ray fluorescence (XRF). The results indicate that the No. 7 Coal belongs to a low rank (Ro.ran =0.659%) and high-ash coal (40.54%). Compared to common Chinese and world low-rank coals, the lqe coal contains anomalous concentrations of rare metal elements, rare-scattered (dispersed) elements and rare earth elements. The highest contents of Rb, Cs, Ga and REY reach to 180, 26, 37, and 397 ppm, respectively. Their average contents of these elements are 10.9, 15, 4.8 and 3.5 times higher than those of world coals, respectively. Minerals in the coal include kaolinite, quartz, muscovite, siderite, and traces of rutile, and brookite. Kaolinite could be main host minerals of Rb, Cs, Ga and REY. The anomalous rare element Rb and Cs accumulation in the Iqe coal is related to both organic and inorganic matter. The REY concentrations may be related to circulation of thermal solutions, contained or sorbed by clayey particles, and organic matter as well.展开更多
The No. 6 Coal-bed from the Heidaigou Mine, Jungar Coalfield, Inner Mongolia is a super-large Ga deposit. The dominant carrier of Ga is boehmite in coal. The study of coal facies may provide genetic enrichment informa...The No. 6 Coal-bed from the Heidaigou Mine, Jungar Coalfield, Inner Mongolia is a super-large Ga deposit. The dominant carrier of Ga is boehmite in coal. The study of coal facies may provide genetic enrichment information of Ga and its carrier (boehmite) in the Ga deposit. On the basis of study on coal petrology and mineralogy, it was found that the No. 6 Coal-bed from the Heidaigou Mine of Jungar was enriched in inertinites and the microlitho-types were dominated by clarodurite. The maceral morphological features and association indicate that the coal-bed was formed in a dry sedimentary environment or in a periodic dry sedimentary environment caused by the alternating variations of groundwater level. The optimum conditions for the enrichment of Ga and its particular carrier (boehmite) were dominated by four transitional conditions: (1) the upper delta plain which was the transitional zone between alluvial and lower delta plains, (2) the transitional zone between the dry and wet forest swamps, being slightly apt to the dry one, (3) the transitional tree density between the thick and loose ones, and (4) the low moor that was the transitional zone between two high moors during peat accumulation.展开更多
The continental shales from the Middle Jurassic Shimengou Formation of the northern Qaidam Basin, northwestern China, have been investigated in recent years because of their shale gas potential. In this study, a total...The continental shales from the Middle Jurassic Shimengou Formation of the northern Qaidam Basin, northwestern China, have been investigated in recent years because of their shale gas potential. In this study, a total of twenty-two shale samples were collected from the YQ-1 borehole in the Yuqia Coalfield, northern Qaidam Basin. The total organic carbon (TOC) contents, pore structure parameters, and fractal characteristics of the samples were investigated using TOC analysis, lowtemperature nitrogen adsorption experiments, and fractal analysis. The results show that the average pore size of the Shimengou shales varied from 8.149 nm to 20.635 nm with a mean value of 10.74 nm, which is considered mesopore-sized. The pores of the shales are mainly inkbottle- and slit-shaped. The sedimentary environment plays an essential role in controlling the TOC contents of the low maturity shales, with the TOC values of shales from deep to semi-deep lake facies (mean: 5.23%) being notably higher than those of the shore-shallow lake facies (mean: 0.65%). The fractal dimensions range from 2.4639 to 2.6857 with a mean of 2.6122, higher than those of marine shales, which indicates that the pore surface was rougher and the pore structure more complex in these continental shales. The fraetal dimensions increase with increasing total pore volume and total specific surface area, and with decreasing average pore size. With increasing TOC contents in shales, the fractal dimensions increase first and then decrease, with the highest value occurring at 2% of TOC content, which is in accordance with the trends between the TOC and both total specific surface area and total pore volume. The pore structure complexity and pore surface roughness of these low-maturity shales would be controlled by the combined effects of both sedimentary environments and the TOC contents.展开更多
The secondary biogenic gas is an important original type of the coalbed methane (CBM) in China. Based on the analyses of sedimentary and burial history of the Permian coal-bearing strata, combined with thermal history...The secondary biogenic gas is an important original type of the coalbed methane (CBM) in China. Based on the analyses of sedimentary and burial history of the Permian coal-bearing strata, combined with thermal history and gas generation process of coals, the CBM reservoir-forming dynamic system with mixed secondary biogenic and thermogenic gases in the Huainan Coalfield is subdivided into four evolutionary stages as follows: (i) shallowly-buried peat and early biogenic gas stage; (ii) deeply buried coal seams and thermogenic gas stage; (iii) exhumation of coal-bearing strata and adsorbed gas lost stage; and (iv) re-buried coal-bearing strata and secondary biogenic gas supplement stage. The Huainan CBM reservoir-forming model has the features of the basin-centered gas accumulation. The evolution of the reservoir-forming dynamic system proves that the thermogenic gas is not the main gas source for the Huainan CBM reservoir. Only the secondary biogenic gases as an additional source replenish into the coal bed after basin-uplift, erosional unroofing and subsequent scattering of thermogenic gases. Then this kind of mixed CBM reservoirs can be formed under suitable conditions.展开更多
Based on an analysis of the present geo-temperature field and the thermal conductivity (K) of 62 samples from the central-south area of the Huaibei coalfield in eastern China, we calculated the heat flow and plotted i...Based on an analysis of the present geo-temperature field and the thermal conductivity (K) of 62 samples from the central-south area of the Huaibei coalfield in eastern China, we calculated the heat flow and plotted its distribution map. The results show that the average heat flow in the research area is about 60 mW/m2. It is different from other major energy basins in the North China Plate, but has close relationship with the regional geology and the deep geological setting. The heat flow is comparatively higher in the southeastern, central, and northwestern areas than in the northeastern and southwestern areas. The geo-temperature distribution map of the bottom interface of the Permian coal measure was drawn by calculating its embedding depth and geo-temperature gradients. Finally, the present gas generation condition of the Permian coal measure is discussed by associating with the temperature condition, the vitrinite reflectance (Ro), the metamorphism of coal and tectonic-burial evolution. The study indicates all present characters of the Permian coal measure, such as lower present temperature, higher Ro value, middle-high rank coals, and uplift and extension events after the coal measure sediment, are favorable for the generation of secondary biogenic gas, but not thermogenic gas or primary biogenic gas.展开更多
Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in th...Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point.展开更多
It is very difficult to clearly detect the location of a burning area in a coal mine since it is hidden underground.So we conducted research on the distribution of the burning area before controlling it.Firstly,the or...It is very difficult to clearly detect the location of a burning area in a coal mine since it is hidden underground.So we conducted research on the distribution of the burning area before controlling it.Firstly,the original drilling technique was used to analyze and determine the loose and scope of caving of burning area through field test,and then obtained the gases and the temperature data in this area were according to the borehole data.By analyzing these data,we found out that the location of burning area concentrated in the loose and caving area;and finally,the location and development of the burning area within the tested area were accurately determined.Based on this theory,we used the ground penetrating radar(GPR) to find out the loose and caving scale in the burning area during the control process of the burning area,and then located the fire-extinguishing boreholes within target which we used to control burning fire in the section.A mobile comprehensive fire prevention and extinguishing system based on the three-phase foam fire prevention and control technique was then adopted and conducted in the burning area which took only 9 months to extinguish the 227,000 m 2 of burning area of 9# coal.This control technology and experience will provide a very important reference to the control of other coalfield fire and hillock fire in the future.展开更多
Based on the systematic analysis of the coal gangue in Weibei Coalfield, such as petrologic characteristics, chemical composition, nutrient elements, deleterious elements, and the transformation, and compared with the...Based on the systematic analysis of the coal gangue in Weibei Coalfield, such as petrologic characteristics, chemical composition, nutrient elements, deleterious elements, and the transformation, and compared with the soil element content background values of Loess Plateau and national harmful materials controlling standards, we conclude that the coal gangue in the Weibei Coalfield has huge potential to be used as clay fertilizer.展开更多
基金financially supported by the National Science Fundamental of China Projects(Nos.41072115 and 51174262)the project of the Science Foundation of Hebei(No.D2011402034)
文摘Total 138 coal samples and 14 parting samples were taken from the No. 6 Seam of the Jungar Coalfield, Inner Mongolia. These samples were analysed by optical microscopy, sequential chemical extraction procedure (SCEP), inductively coupled plasma mass spectrometry (ICP-MS), X-ray powder diffraction (XRD), and scanning electron microscope in conjunction with an energy-dispersive X-ray spectrometer (SEM-EDX) analysis. The results indicate that the Li contents have reached the industrial grade of the coal associated Li deposit, and the total Li reserves have reached 2406600 tons, that is, 5157000 tons Li2O in the No. 6 seam in the Jungar Coalfield. The sequential chemical extraction procedure results suggest that the Li concentration is mainly related to inorganic matter. The minerals in the coals consist of kaolinite, boehmite, chlorite-group mineral, quartz, calcite, pyrite, siderite and amorphous clay material. Some Li could be absorbed by clay minerals in the Li-bearing coal seam. The chlorite phase?could be?most likely the host for a part of Li. The Yinshan Oldland should be the most possible source of Li of the coal.
基金Supported by the National Key Basic Research and Development Program (Grant No. 2006CB202201)the National Natural Science Foundation of China (Grant No. 40472083)the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200448)
文摘Mineralogy and geochemistry of the four main workable coal seams (No.6, No.7, No.8, and No.11) of Late Permian age from the Songzao Coalfield, Chongqing, Southwest China, were examined using in- ductively coupled plasma-mass spectrometry (ICP-MS), X-ray fluorescence spectrometry (XRF), cold-vapor absorption spectrometry (CV-AAS), ion-selective electrode (ISE), scanning electron mi- croscopy equipped with an energy-dispersive X-ray spectrometer (SEM-EDX), and X-ray diffraction analysis (XRD). The results showed that the main workable No.8 Coal that accounts for about 60% of the total coal reserves in the Songzao Coalfield was not enriched in hazardous trace elements. The No.11 Coal has high concentrations of alkaline elements, Be (9.14 μg/g), Sc (12.9 μg/g), Ti (9508 μg/g), Mn (397 μg/g), Co (23.7 μg/g), Cu (108 μg/g), Zn (123 μg/g), Ga (32 μg/g), Zr (1304 μg/g), Nb (169 μg/g), Hf (32.7 μg/g), Ta (11.4 μg/g), W (24.8 μg/g), Hg (0.28 μg/g), Pb (28.1 μg/g), Th (24.1 μg/g), and rare earth elements (509.62 μg/g). The concentration of Nb and Ta in the No. 11 Coal is higher than the industrial grade, and their potential utilization should be further studied. Besides pyrite, quartz, calcite, and clay minerals, trace minerals including chalcopyrite, marcasite, siderite, albite, mixed-layer clay minerals of illite and smectite, monazite, apatite, anatase, chlorite, and gypsum were found in the No.11 Coal. It should be noted that alabandite of hydrothermal origin and anatase occurring as cement were identi- fied in coal. In addition, the clayey microbands derived from alkaline volcanic ashes were identified in the coal. The dominant compositions of these clayey microbands were mixed-layer clay minerals of illite and smectite, which were interlayered with organic bands. The modes of occurrence of alkaline volcanic ash bands indicate that the volcanic activities were characterized by the multiple eruptions, short time interval and small scale for each eruption during peat accumulation. The alkaline volcanic a
文摘This paper discussed the petrographic characteristics of No.6 coal from the Xiaoyugou mine,Jungar Coalfield,Ordos Basin,China.10 samples(7 coal,1 parting mudstone and 2 floor mudstone)were analysed by microscopical and geochemical methods.Four maceral compositions and several associated elements parameters were selected as indicators and corresponding diagrams were drawn to explicate the sedimentary environment.The results indicate that the maceral is dominated by vitrinite and minerals are mainly kaolinite in the No.6 coal.The sedimentary facies vary from barrier island system to tidal-flat which is a deposition process of water body shallowing and the coal-forming plants are herbs and woody plants formed in swamps.
基金supported by National Natural Science Foundation of China (Grant Nos. 41030422, 40772135, 40972131, 40940014)National Basic Research Program of China (Grant No. 2009CB219601)
文摘The geothermal history and the tectonic subsidence history of the Huaibei-Huainan coalfields were reconstructed by using the vitrinite reflectance data, and their correlative restriction on coalbed gas generation of Huaibei-Huainan coalfields and Qinshui coal basin was discussed. The burial, thermal, and maturity histories of are similar between Huaibei coalfield and Huainan coalfield, obviously different from those of Qinshui coal basin. Based on the tectono-thermal evolution characters of Huaibei-Huainan coalfields and Qinshui basin, the process of coalbed gas generation can be divided into three stages: (1) Dur- ing Early Mesozoic, both in Huaibei-Huainan and Qinshui, the buried depth of Permian coal seams increased rapidly, which resulted in strong metamorphism and high burial temperature of coal seams. At this stage, the coal rank was mainly fat coal, and locally reached coking coal. These created an environment favoring the generation of thermogenic gas. (2) From Late Ju- rassic to Cretaceous, in the areas of Huaibei-Hualnan, the strata suffered from erosion and the crust became thinning, and the Permian coal-bearing strata were uplifted to surface. At this stage, the thermogenic gas mostly escaped. Conversely, in Qinshui basin, the cover strata of coal seams kept intact during this stage, and the thermogenic gas were mostly preserved. Furthermore, with the interaction of magmatism, the burial temperature of coal seams reached higher peak value, and it was suitable for the secondary generation of thermogenic gas. (3) From Paleogene onward, in area of Huainan-Huaibei, the maturity of coal and burial temperature were propitious to the generation of secondary biogenic gases. However, in Qinshui basin, the maturity of coal went against genesis of second biogenic gas or thermogenic gas. By comparison, Huaibei-Huainan coalfields are dominated by thermogenic gas with a significant biogenic gas and hydrodynamic overprint, whereas Qinshui basin is dominated mainly by thermogenic gas.
基金supported by the China geological survey project"Qaidam Basin Oil and Gas Resources Evaluation"(Nr:([2013]4-(3),001-008)National Natural Science Foundation of China(No.41330317)
文摘Total of 23 bench samples were taken from the No. 7 Coal of Iqe Coalfield, Qinghai Province, China, following Chinese Standard Method GB/T 482-2008 (2008). These samples were analyzed by powder X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP- MS) and X-ray fluorescence (XRF). The results indicate that the No. 7 Coal belongs to a low rank (Ro.ran =0.659%) and high-ash coal (40.54%). Compared to common Chinese and world low-rank coals, the lqe coal contains anomalous concentrations of rare metal elements, rare-scattered (dispersed) elements and rare earth elements. The highest contents of Rb, Cs, Ga and REY reach to 180, 26, 37, and 397 ppm, respectively. Their average contents of these elements are 10.9, 15, 4.8 and 3.5 times higher than those of world coals, respectively. Minerals in the coal include kaolinite, quartz, muscovite, siderite, and traces of rutile, and brookite. Kaolinite could be main host minerals of Rb, Cs, Ga and REY. The anomalous rare element Rb and Cs accumulation in the Iqe coal is related to both organic and inorganic matter. The REY concentrations may be related to circulation of thermal solutions, contained or sorbed by clayey particles, and organic matter as well.
基金Supported by the National Basic Research Program of China (Grant Nos. 2003CB214607 and 2006CB202201) and the National Natural Science Foundation of China (Grant Nos. 40472083 and 40672102)
文摘The No. 6 Coal-bed from the Heidaigou Mine, Jungar Coalfield, Inner Mongolia is a super-large Ga deposit. The dominant carrier of Ga is boehmite in coal. The study of coal facies may provide genetic enrichment information of Ga and its carrier (boehmite) in the Ga deposit. On the basis of study on coal petrology and mineralogy, it was found that the No. 6 Coal-bed from the Heidaigou Mine of Jungar was enriched in inertinites and the microlitho-types were dominated by clarodurite. The maceral morphological features and association indicate that the coal-bed was formed in a dry sedimentary environment or in a periodic dry sedimentary environment caused by the alternating variations of groundwater level. The optimum conditions for the enrichment of Ga and its particular carrier (boehmite) were dominated by four transitional conditions: (1) the upper delta plain which was the transitional zone between alluvial and lower delta plains, (2) the transitional zone between the dry and wet forest swamps, being slightly apt to the dry one, (3) the transitional tree density between the thick and loose ones, and (4) the low moor that was the transitional zone between two high moors during peat accumulation.
文摘The continental shales from the Middle Jurassic Shimengou Formation of the northern Qaidam Basin, northwestern China, have been investigated in recent years because of their shale gas potential. In this study, a total of twenty-two shale samples were collected from the YQ-1 borehole in the Yuqia Coalfield, northern Qaidam Basin. The total organic carbon (TOC) contents, pore structure parameters, and fractal characteristics of the samples were investigated using TOC analysis, lowtemperature nitrogen adsorption experiments, and fractal analysis. The results show that the average pore size of the Shimengou shales varied from 8.149 nm to 20.635 nm with a mean value of 10.74 nm, which is considered mesopore-sized. The pores of the shales are mainly inkbottle- and slit-shaped. The sedimentary environment plays an essential role in controlling the TOC contents of the low maturity shales, with the TOC values of shales from deep to semi-deep lake facies (mean: 5.23%) being notably higher than those of the shore-shallow lake facies (mean: 0.65%). The fractal dimensions range from 2.4639 to 2.6857 with a mean of 2.6122, higher than those of marine shales, which indicates that the pore surface was rougher and the pore structure more complex in these continental shales. The fraetal dimensions increase with increasing total pore volume and total specific surface area, and with decreasing average pore size. With increasing TOC contents in shales, the fractal dimensions increase first and then decrease, with the highest value occurring at 2% of TOC content, which is in accordance with the trends between the TOC and both total specific surface area and total pore volume. The pore structure complexity and pore surface roughness of these low-maturity shales would be controlled by the combined effects of both sedimentary environments and the TOC contents.
文摘The secondary biogenic gas is an important original type of the coalbed methane (CBM) in China. Based on the analyses of sedimentary and burial history of the Permian coal-bearing strata, combined with thermal history and gas generation process of coals, the CBM reservoir-forming dynamic system with mixed secondary biogenic and thermogenic gases in the Huainan Coalfield is subdivided into four evolutionary stages as follows: (i) shallowly-buried peat and early biogenic gas stage; (ii) deeply buried coal seams and thermogenic gas stage; (iii) exhumation of coal-bearing strata and adsorbed gas lost stage; and (iv) re-buried coal-bearing strata and secondary biogenic gas supplement stage. The Huainan CBM reservoir-forming model has the features of the basin-centered gas accumulation. The evolution of the reservoir-forming dynamic system proves that the thermogenic gas is not the main gas source for the Huainan CBM reservoir. Only the secondary biogenic gases as an additional source replenish into the coal bed after basin-uplift, erosional unroofing and subsequent scattering of thermogenic gases. Then this kind of mixed CBM reservoirs can be formed under suitable conditions.
基金supported by the National Basic Research Program of China (Grant Nos. 2006CB202201, 2009CB219601)National Natural Science Founda-tion of China (Grant Nos. 40972131, 40772135, 40172058)
文摘Based on an analysis of the present geo-temperature field and the thermal conductivity (K) of 62 samples from the central-south area of the Huaibei coalfield in eastern China, we calculated the heat flow and plotted its distribution map. The results show that the average heat flow in the research area is about 60 mW/m2. It is different from other major energy basins in the North China Plate, but has close relationship with the regional geology and the deep geological setting. The heat flow is comparatively higher in the southeastern, central, and northwestern areas than in the northeastern and southwestern areas. The geo-temperature distribution map of the bottom interface of the Permian coal measure was drawn by calculating its embedding depth and geo-temperature gradients. Finally, the present gas generation condition of the Permian coal measure is discussed by associating with the temperature condition, the vitrinite reflectance (Ro), the metamorphism of coal and tectonic-burial evolution. The study indicates all present characters of the Permian coal measure, such as lower present temperature, higher Ro value, middle-high rank coals, and uplift and extension events after the coal measure sediment, are favorable for the generation of secondary biogenic gas, but not thermogenic gas or primary biogenic gas.
基金Project(201412016)supported by the Special Fund for Public Projects of National Administration of Surveying,Mapping and Geoinformation of ChinaProject(51174287)supported by the National Natural Science Foundation of China
文摘Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point.
基金funded by the National Natural Science Foundation of China (No. 51134020)the State Key Laboratory of Coal Resources and Mine Safety Foundation (No.SKLCRSM08x06)the Natural Science Foundation of Jiangsu Province (No. BK2009004)
文摘It is very difficult to clearly detect the location of a burning area in a coal mine since it is hidden underground.So we conducted research on the distribution of the burning area before controlling it.Firstly,the original drilling technique was used to analyze and determine the loose and scope of caving of burning area through field test,and then obtained the gases and the temperature data in this area were according to the borehole data.By analyzing these data,we found out that the location of burning area concentrated in the loose and caving area;and finally,the location and development of the burning area within the tested area were accurately determined.Based on this theory,we used the ground penetrating radar(GPR) to find out the loose and caving scale in the burning area during the control process of the burning area,and then located the fire-extinguishing boreholes within target which we used to control burning fire in the section.A mobile comprehensive fire prevention and extinguishing system based on the three-phase foam fire prevention and control technique was then adopted and conducted in the burning area which took only 9 months to extinguish the 227,000 m 2 of burning area of 9# coal.This control technology and experience will provide a very important reference to the control of other coalfield fire and hillock fire in the future.
文摘Based on the systematic analysis of the coal gangue in Weibei Coalfield, such as petrologic characteristics, chemical composition, nutrient elements, deleterious elements, and the transformation, and compared with the soil element content background values of Loess Plateau and national harmful materials controlling standards, we conclude that the coal gangue in the Weibei Coalfield has huge potential to be used as clay fertilizer.