电磁是煤岩动力灾害预测的重要手段,掌握电磁信号特征与煤体损伤程度间的关系是灾害预测的关键。通过原煤SHPB试验及瞬变电磁监测,分析煤体冲击破裂过程中的电磁信号(0~3 k Hz频段)特征,从破裂耗能及破碎程度两方面分析试件损伤特性,并...电磁是煤岩动力灾害预测的重要手段,掌握电磁信号特征与煤体损伤程度间的关系是灾害预测的关键。通过原煤SHPB试验及瞬变电磁监测,分析煤体冲击破裂过程中的电磁信号(0~3 k Hz频段)特征,从破裂耗能及破碎程度两方面分析试件损伤特性,并探求电磁信号特征(幅值、能量)与煤体破裂损伤特性间的关系,研究发现:(1)分形维数与最终破裂程度规律相似,利用分形维数来定量评价煤体破裂程度是可行的;(2)煤岩冲击破裂电磁信号呈瞬时脉冲状,持续时间仅为微秒级,信号幅值及能量总体随着破碎程度的增大而增大;(3)煤岩冲击破裂电磁信号的幅值及能量与其损伤程度(分形维数)符合较好的线性关系,利用电磁信号特征监测煤岩损伤程度是可行的;(4)受煤岩材料固有缺陷的不确定性及共振破坏现象的影响,煤岩的损伤程度与冲击耗散能间的相关性较弱。研究成果对于利用电磁信号特征评价煤体损伤程度进而预测动力灾害的发生具有重要意义。展开更多
In order to obtain the characteristics of the effects of cyclic impact loading on the damage of coal-rock in the presence of a local static load constraint,the evolution of the damage factor and the fracture rate duri...In order to obtain the characteristics of the effects of cyclic impact loading on the damage of coal-rock in the presence of a local static load constraint,the evolution of the damage factor and the fracture rate during the process and incremental cyclic impact on raw coal and briquettes has been studied.Experimental results show that the presence of local static load restraint improves the impact resistance of the coal-rock,and the damage factor of the coal-rock shows obvious zoning characteristics.When the coal-rock is in an elastic state,the partition with a larger static load restraint area has stronger impact resistance,when the coal-rock is in a plastic state,the partition with a larger static load restraint area has a weaker impact resistance.Increasing impulsive cyclic impacts have a higher damage efficiency to coal-rock than constant impulsive cyclic impacts.The difference in rock breaking efficiency between the two cyclic impact methods is mainly reflected in the partition with the largest constrained area.The crack propagation on the coal-rock surface is more consistent with the partition characteristics of the damage factor.When the static load constrained zone is in an elastic state,the static load has an inhibitory effect on the crack growth.When the static load confinement zone is in a plastic state,the cracks mainly propagate in the static load confinement zone,and the constrained zone mainly consists of tensile cracks that grow in the vertical direction,while the cracks in the non-constrained zone mainly grow in an oblique direction.Finally,fracture mechanics was applied to analyze the failure type of the sample.展开更多
文摘电磁是煤岩动力灾害预测的重要手段,掌握电磁信号特征与煤体损伤程度间的关系是灾害预测的关键。通过原煤SHPB试验及瞬变电磁监测,分析煤体冲击破裂过程中的电磁信号(0~3 k Hz频段)特征,从破裂耗能及破碎程度两方面分析试件损伤特性,并探求电磁信号特征(幅值、能量)与煤体破裂损伤特性间的关系,研究发现:(1)分形维数与最终破裂程度规律相似,利用分形维数来定量评价煤体破裂程度是可行的;(2)煤岩冲击破裂电磁信号呈瞬时脉冲状,持续时间仅为微秒级,信号幅值及能量总体随着破碎程度的增大而增大;(3)煤岩冲击破裂电磁信号的幅值及能量与其损伤程度(分形维数)符合较好的线性关系,利用电磁信号特征监测煤岩损伤程度是可行的;(4)受煤岩材料固有缺陷的不确定性及共振破坏现象的影响,煤岩的损伤程度与冲击耗散能间的相关性较弱。研究成果对于利用电磁信号特征评价煤体损伤程度进而预测动力灾害的发生具有重要意义。
基金the financial support of the Project supported by Department of Science and Technology of Liaoning province(2023-BS-083)Basic Research Funds of China University of Mining and Technology(Beijing)-Doctoral Outstanding Innovation Talent Cultivation Fund(NO.BBJ2023004).
文摘In order to obtain the characteristics of the effects of cyclic impact loading on the damage of coal-rock in the presence of a local static load constraint,the evolution of the damage factor and the fracture rate during the process and incremental cyclic impact on raw coal and briquettes has been studied.Experimental results show that the presence of local static load restraint improves the impact resistance of the coal-rock,and the damage factor of the coal-rock shows obvious zoning characteristics.When the coal-rock is in an elastic state,the partition with a larger static load restraint area has stronger impact resistance,when the coal-rock is in a plastic state,the partition with a larger static load restraint area has a weaker impact resistance.Increasing impulsive cyclic impacts have a higher damage efficiency to coal-rock than constant impulsive cyclic impacts.The difference in rock breaking efficiency between the two cyclic impact methods is mainly reflected in the partition with the largest constrained area.The crack propagation on the coal-rock surface is more consistent with the partition characteristics of the damage factor.When the static load constrained zone is in an elastic state,the static load has an inhibitory effect on the crack growth.When the static load confinement zone is in a plastic state,the cracks mainly propagate in the static load confinement zone,and the constrained zone mainly consists of tensile cracks that grow in the vertical direction,while the cracks in the non-constrained zone mainly grow in an oblique direction.Finally,fracture mechanics was applied to analyze the failure type of the sample.