Experimental study discovered that: (i) coal rocks and sandstone in the course of loading have three types of infrared thermal image features and three types of infrared radiation temperature features; (ii) infrared d...Experimental study discovered that: (i) coal rocks and sandstone in the course of loading have three types of infrared thermal image features and three types of infrared radiation temperature features; (ii) infrared detection is comparable with acoustic emission detection and electrical resistance detection. Generally, the infrared forewarning of coal rocks’ failure comes later than that of acoustic and electrical resistance, but the infrared radiation temperature forewarning of coal burst comes earlier. On the basis of comprehensive study and analysis, it was suggested that stress nearby 0.79 σ c should be taken as the stress-caution-zone for rock mass failure, ground pressure and its disasters monitoring.展开更多
The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,t...The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency.展开更多
This paper presents an integrated investigation of the ground stability of a deep gateroad with a 1 km burial depth based on a field test, case studies, and numerical modelling. In situ stress measurements and mechani...This paper presents an integrated investigation of the ground stability of a deep gateroad with a 1 km burial depth based on a field test, case studies, and numerical modelling. In situ stress measurements and mechanical properties tests were first conducted in the test site. Then, the deformation behavior, stress and yield zone distributions, as well as the bolts load of the gateroad, were simulated using FLAC3D software. The model results demonstrated that the soft rock properties and high in situ stress were the main factors for the deep gateroad instability, and the shear slip failure induced by the high stress was the primary failure model for the deep rock mass. In addition, the unsuitable support patterns, especially the relatively short bolts/cables with low pre-tensions, the lack of high-strengthen secondary supports and the unsupported floor strata, also contributed to the gateroad instability. Subsequently, a new combined supporting strategy, incorporating longer bolts/cables, yielding ring supports, and grouting measures, was proposed for the deep gateroad, and its validity was verified via field monitoring. All these could be a reference for understanding the failure mechanism of the gateroad with 1 km burial depth.展开更多
文摘Experimental study discovered that: (i) coal rocks and sandstone in the course of loading have three types of infrared thermal image features and three types of infrared radiation temperature features; (ii) infrared detection is comparable with acoustic emission detection and electrical resistance detection. Generally, the infrared forewarning of coal rocks’ failure comes later than that of acoustic and electrical resistance, but the infrared radiation temperature forewarning of coal burst comes earlier. On the basis of comprehensive study and analysis, it was suggested that stress nearby 0.79 σ c should be taken as the stress-caution-zone for rock mass failure, ground pressure and its disasters monitoring.
基金supported by Youth Science Foundation of the National Natural Science Foundation of China(No.51104156)the Fundamental Research Funds for the Central Universities of China(No.2013QNB02)the 12th Five Year National Science and Technology Support Key Project of China(Nos. 2012BAK04B07-2 and 2012BAK09B01-04)
文摘The physical and mechanical change processes of coal and rock are closely related to energy transformation,and the destruction and failure of coal and rock is an instability phenomena driven by energy change.However,the energy change of large-scale coal rock in the mine site is hardly calculated accurately,making it difficult to monitor coal-rock systematic failure and collapse from the perspective of energy.By the energy dissipation EMR monitoring system,we studied the damage and failure of coal and rock with bursting liability from the energy dissipation point using the geophysical method-EMR,and explored the energy dissipation characteristics during uniaxial compression and their main influencing factors.The results show that under displacement-control loading mode,there are 2 types of energy dissipation trends for both coal and rock with bursting liability.The type Ⅰ trend is a steady increase one during the whole process,therein,the energy dissipation of rock samples is accelerated at the peak load.The type Ⅱ trend energy is a W-shaped fluctuating one containing 6 stages.Under load-control loading mode,there is one energy dissipation trend of shock downward-steady rise.Besides that,rock samples also present a trend of 4 stages.The energy dissipation characteristics of coal and rockduring loading failure process can be used as effective criteria to assess whether they are in a stable or destructive stage.The factors influencing energy dissipation in the loading failure process of coal and rock mainly include strength,homogeneity,and energy input efficiency.
基金Project(2017RCJJ011) supported by the Scientific Research Foundation of Shaaadong University of Science and Technology for Recruited Talents, China Projects(01CK03203, 02CK02302) supported by the Shaaadong Provincial First-Class Discipline Fundamental, China Proj ect(ZR2018QEE001) supported by the Natural Science Foundation of Shandong Province, China
文摘This paper presents an integrated investigation of the ground stability of a deep gateroad with a 1 km burial depth based on a field test, case studies, and numerical modelling. In situ stress measurements and mechanical properties tests were first conducted in the test site. Then, the deformation behavior, stress and yield zone distributions, as well as the bolts load of the gateroad, were simulated using FLAC3D software. The model results demonstrated that the soft rock properties and high in situ stress were the main factors for the deep gateroad instability, and the shear slip failure induced by the high stress was the primary failure model for the deep rock mass. In addition, the unsuitable support patterns, especially the relatively short bolts/cables with low pre-tensions, the lack of high-strengthen secondary supports and the unsupported floor strata, also contributed to the gateroad instability. Subsequently, a new combined supporting strategy, incorporating longer bolts/cables, yielding ring supports, and grouting measures, was proposed for the deep gateroad, and its validity was verified via field monitoring. All these could be a reference for understanding the failure mechanism of the gateroad with 1 km burial depth.