利用叔丁醇作为共溶剂可使棕榈油、甲醇和催化剂形成均相体系,用于酯交换反应制备生物柴油,可以缩短反应时间。实验以棕榈油为原料,氢氧化钠为催化剂,在带夹套的玻璃反应器内进行反应。考察了共溶剂质量分数、催化剂质量分数、反应温度...利用叔丁醇作为共溶剂可使棕榈油、甲醇和催化剂形成均相体系,用于酯交换反应制备生物柴油,可以缩短反应时间。实验以棕榈油为原料,氢氧化钠为催化剂,在带夹套的玻璃反应器内进行反应。考察了共溶剂质量分数、催化剂质量分数、反应温度、醇油摩尔比等因素对生物柴油产率的影响,获得了最佳反应条件。实验结果表明,当叔丁醇质量为棕榈油质量的11.6%,催化剂质量为油质量的1.0%,反应温度为60℃,醇油摩尔比为6∶1时,反应2 m in后生物柴油产率达到了90%。展开更多
Aqueous Zn-based energy-storage devices have aroused much interest in recent years.However,uncontrollable dendrite growth in the Zn anode significantly limits their cycle life.Moreover,the poor low-temperature perform...Aqueous Zn-based energy-storage devices have aroused much interest in recent years.However,uncontrollable dendrite growth in the Zn anode significantly limits their cycle life.Moreover,the poor low-temperature performance arising from the freezing of aqueous electrolytes at sub-zero temperatures restricts their practical applications in cold regions.Here,we fabricated low-temperature-tolerant and durable Zn-ion hybrid supercapacitors(ZHSCs)via modulating a co-solvent water/ethylene glycol electrolyte.The interaction of intermolecular hydrogen bonds between water and ethylene glycol as well as cation solvation was systematically investigated by tuning the co-solvent composition.The results illustrate that the ZnSO_(4)/water/ethylene glycol(65%)electrolyte possesses high ionic conductivity at low temperatures and effectively prevents the dendrite formation of the Zn anode.The as-fabricated ZHSCs exhibit long-term cyclability and are capable of working at sub-zero temperatures as low as -40℃.The present ZHSCs are anti-freezing and cost-effective,which may find new applications in the fields of next-generation electrochemical energy storage devices.展开更多
文摘利用叔丁醇作为共溶剂可使棕榈油、甲醇和催化剂形成均相体系,用于酯交换反应制备生物柴油,可以缩短反应时间。实验以棕榈油为原料,氢氧化钠为催化剂,在带夹套的玻璃反应器内进行反应。考察了共溶剂质量分数、催化剂质量分数、反应温度、醇油摩尔比等因素对生物柴油产率的影响,获得了最佳反应条件。实验结果表明,当叔丁醇质量为棕榈油质量的11.6%,催化剂质量为油质量的1.0%,反应温度为60℃,醇油摩尔比为6∶1时,反应2 m in后生物柴油产率达到了90%。
基金supported by the National Natural Science Foundation of China(51772116 and 51972132)the program for HUST Academic Frontier Youth Team(2016QYTD04)。
文摘Aqueous Zn-based energy-storage devices have aroused much interest in recent years.However,uncontrollable dendrite growth in the Zn anode significantly limits their cycle life.Moreover,the poor low-temperature performance arising from the freezing of aqueous electrolytes at sub-zero temperatures restricts their practical applications in cold regions.Here,we fabricated low-temperature-tolerant and durable Zn-ion hybrid supercapacitors(ZHSCs)via modulating a co-solvent water/ethylene glycol electrolyte.The interaction of intermolecular hydrogen bonds between water and ethylene glycol as well as cation solvation was systematically investigated by tuning the co-solvent composition.The results illustrate that the ZnSO_(4)/water/ethylene glycol(65%)electrolyte possesses high ionic conductivity at low temperatures and effectively prevents the dendrite formation of the Zn anode.The as-fabricated ZHSCs exhibit long-term cyclability and are capable of working at sub-zero temperatures as low as -40℃.The present ZHSCs are anti-freezing and cost-effective,which may find new applications in the fields of next-generation electrochemical energy storage devices.