期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Strong Minkowski Separation and Co-Drop Property 被引量:2
1
作者 Jing Hui QIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第12期2295-2302,共8页
In the framework of topological vector spaces, we give a characterization of strong Minkowski separation, introduced by Cheng, et al., in terms of convex body separation. From this, several results on strong Minkowski... In the framework of topological vector spaces, we give a characterization of strong Minkowski separation, introduced by Cheng, et al., in terms of convex body separation. From this, several results on strong Minkowski separation are deduced. Using the results, we prove a drop theorem involving weakly countably compact sets in locally convex spaces. Moreover, we introduce the notion of the co-drop property and show that every weakly countably compact set has the co-drop property. If the underlying locally convex space is quasi-complete, then a bounded weakly closed set has the co-drop property if and only if it is weakly countably compact. 展开更多
关键词 drop property co-drop property locally convex space strong Minkowski separation weakly countably compact set
原文传递
M-l^1完备和M-co-drop性质
2
作者 贺飞 赵辉 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期378-381,共4页
在有界线性空间中,提出了M-l1完备和M-co-drop性质的概念.证明了凸有界线性空间是M-完备等价于M-l1完备,而且给出有界线性空间中M-co-drop性质与有界线性泛函可取极值之间的关系.
关键词 有界线性空间 M-l1完备 M-co-drop性质
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部