In ultra-wideband through-wall-imaging applications, wall clutters are always much stronger than the target reflections, and they tend to persist over a long period of time. As a result, targets are obscured and not v...In ultra-wideband through-wall-imaging applications, wall clutters are always much stronger than the target reflections, and they tend to persist over a long period of time. As a result, targets are obscured and not visible in the image. In this work, an antenna planes-based wall clutter mitigation method was proposed. By using two imaging procedures in different scanning planes, this method can mitigate the wall clutter in both SAR and MIMO modes. The proposed method was tested using EM numerical data via the FDTD method. The processing results show that the imaging quality is improved significantly.展开更多
文摘分析了AEW雷达系统中实际存在的阵元幅相误差对二维空时自适应处理(2D STAP)性能的影响。提出了一种更加稳健的三维空时自适应处理(3D STAP)技术,补偿因存在阵元幅相误差而导致各列子阵俯仰方向图的不一致性。为了降低计算量,还提出了一种三维先时后空自适应处理(3D T SAP)的准最优技术。对仿真数据和某实测数据的处理结果证明三维处理具有优良的性能和很强的误差容错能力。
基金Projects(61372161,61271441)supported by the National Natural Science Foundation of China
文摘In ultra-wideband through-wall-imaging applications, wall clutters are always much stronger than the target reflections, and they tend to persist over a long period of time. As a result, targets are obscured and not visible in the image. In this work, an antenna planes-based wall clutter mitigation method was proposed. By using two imaging procedures in different scanning planes, this method can mitigate the wall clutter in both SAR and MIMO modes. The proposed method was tested using EM numerical data via the FDTD method. The processing results show that the imaging quality is improved significantly.