The persistence barrier of sea surface temperature anomalies (SSTAs) in the North Pacific was investigated and compared with the ENSO spring persistence barrier. The results show that SSTAs in the central western No...The persistence barrier of sea surface temperature anomalies (SSTAs) in the North Pacific was investigated and compared with the ENSO spring persistence barrier. The results show that SSTAs in the central western North Pacific (CWNP) have a persistence barrier in summer: the persistence of SSTAs in the CWNP shows a significant decline in summer regardless of the starting month. Mechanisms of the summer persistence barrier in the CWNP are different from those of the spring persistence barrier of SSTAs in the central and eastern equatorial Pacific. The phase locking of SSTAs to the annual cycle does not explain the CWNP summer persistence barrier. Remote ENSO forcing has little linear influence on the CWNP summer persistence barrier, compared with local upper-ocean process and atmospheric forcing in the North Pacific. Starting in wintertime, SSTAs extend down to the deep winter mixed layer then become sequestered beneath the shallow summer mixed layer, which is decoupled from the surface layer. Thus, wintertime SSTAs do not persist through the following summer. Starting in summertime, persistence of summer SSTAs until autumn can be explained by the atmospheric forcing through a positive SSTAs-cloud/radiation feedback mechanism because the shallow summertime mixed layer is decoupled from the temperature anomalies at depth, then the following autumnwinter-spring, SSTAs persist. Thus, summer SSTAs in the CWNP have a long persistence, showing a significant decline in the following summer. In this way, SSTAs in the CWNP show a persistence barrier in summer regardless of the starting month.展开更多
基金supported by the 973 program(Grant No.2010CB950400)the Innovation Key Program(Grant No.KZCX2-YWQ11-02) of the Chinese Academy of Sciences+2 种基金the NSFC project(Grant Nos.41030961,41005042,and 41005049)the Fund of State Key Laboratory of Tropical Oceanography(South China Sea Institute of Oceanology,Chinese Academy of Sciences(LTO1101)the 973 program (Grant No.2012CB956000)
文摘The persistence barrier of sea surface temperature anomalies (SSTAs) in the North Pacific was investigated and compared with the ENSO spring persistence barrier. The results show that SSTAs in the central western North Pacific (CWNP) have a persistence barrier in summer: the persistence of SSTAs in the CWNP shows a significant decline in summer regardless of the starting month. Mechanisms of the summer persistence barrier in the CWNP are different from those of the spring persistence barrier of SSTAs in the central and eastern equatorial Pacific. The phase locking of SSTAs to the annual cycle does not explain the CWNP summer persistence barrier. Remote ENSO forcing has little linear influence on the CWNP summer persistence barrier, compared with local upper-ocean process and atmospheric forcing in the North Pacific. Starting in wintertime, SSTAs extend down to the deep winter mixed layer then become sequestered beneath the shallow summer mixed layer, which is decoupled from the surface layer. Thus, wintertime SSTAs do not persist through the following summer. Starting in summertime, persistence of summer SSTAs until autumn can be explained by the atmospheric forcing through a positive SSTAs-cloud/radiation feedback mechanism because the shallow summertime mixed layer is decoupled from the temperature anomalies at depth, then the following autumnwinter-spring, SSTAs persist. Thus, summer SSTAs in the CWNP have a long persistence, showing a significant decline in the following summer. In this way, SSTAs in the CWNP show a persistence barrier in summer regardless of the starting month.