利用ISCCPD2资料分析了青藏高原云宏观参量的时空分布特征,结合NCEP资料分析了不同云类与降水和气温的关系,利用CERES SSF MODIS Edition 3A资料分析了云对地气系统的辐射强迫作用.结果表明,青藏高原地区云量分布整体呈自东向西减少的态...利用ISCCPD2资料分析了青藏高原云宏观参量的时空分布特征,结合NCEP资料分析了不同云类与降水和气温的关系,利用CERES SSF MODIS Edition 3A资料分析了云对地气系统的辐射强迫作用.结果表明,青藏高原地区云量分布整体呈自东向西减少的态势;总云量、低云云量、总光学厚度和总云水路径的分布形势很相似;水高积云、水积云、卷云和冰高积云的云水路径及云光学厚度均较小,冰层云、冰雨层云和深对流云的云水路径及云光学厚度均较大;出现最多的是卷云,最少的是冰层云、冰层积云、冰积云和冰雨层云;青藏高原地区的水积云、水高积云、水高层云、卷云和卷层云的云量与降水一致.近20a,中高云量在青藏高原地区呈上升趋势,低云量则呈明显下降趋势,该结果可能导致青藏高原地区地面气温升高.青藏高原地区云的短波辐射强迫主导着云的净辐射强迫效应,且具有显著的季节变化.展开更多
In this study, we attempted to improve the nowcasting of GRAPES model by adjusting the model initial field through modifying the cloud water, rain water and vapor as well as revising vapor-following rain water. The re...In this study, we attempted to improve the nowcasting of GRAPES model by adjusting the model initial field through modifying the cloud water, rain water and vapor as well as revising vapor-following rain water. The results show that the model nowcasting is improved when only the cloud water and rain water are adjusted or all of the cloud water, rain water and vapor are adjusted in the initial field. The forecasting of the former(latter) approach during 0-3(0-6) hours is significantly improved. Furthermore, for the forecast for 0-3 hours, the latter approach is better than the former. Compared with the forecasting results for which the vapor of the model initial field is adjusted by the background vapor with those by the revised vapor, the nowcasting of the revised vapor is much better than that of background vapor. Analysis of the reasons indicated that when the vapor is adjusted in the model initial field, especially when the saturated vapor is considered, the forecasting of the vapor field is significantly affected. The changed vapor field influences the circulation, which in turn improves the model forecasting of radar reflectivity and rainfall.展开更多
文摘利用ISCCPD2资料分析了青藏高原云宏观参量的时空分布特征,结合NCEP资料分析了不同云类与降水和气温的关系,利用CERES SSF MODIS Edition 3A资料分析了云对地气系统的辐射强迫作用.结果表明,青藏高原地区云量分布整体呈自东向西减少的态势;总云量、低云云量、总光学厚度和总云水路径的分布形势很相似;水高积云、水积云、卷云和冰高积云的云水路径及云光学厚度均较小,冰层云、冰雨层云和深对流云的云水路径及云光学厚度均较大;出现最多的是卷云,最少的是冰层云、冰层积云、冰积云和冰雨层云;青藏高原地区的水积云、水高积云、水高层云、卷云和卷层云的云量与降水一致.近20a,中高云量在青藏高原地区呈上升趋势,低云量则呈明显下降趋势,该结果可能导致青藏高原地区地面气温升高.青藏高原地区云的短波辐射强迫主导着云的净辐射强迫效应,且具有显著的季节变化.
基金National Natural Science Foundation of China(41075083)On the Techniques of 0-6h Quantitative Forecast of Rain(Snow)(GYHY201006001)Science and Technology Planning Project for Guangdong Province(2011A032100006,2012A061400012)
文摘In this study, we attempted to improve the nowcasting of GRAPES model by adjusting the model initial field through modifying the cloud water, rain water and vapor as well as revising vapor-following rain water. The results show that the model nowcasting is improved when only the cloud water and rain water are adjusted or all of the cloud water, rain water and vapor are adjusted in the initial field. The forecasting of the former(latter) approach during 0-3(0-6) hours is significantly improved. Furthermore, for the forecast for 0-3 hours, the latter approach is better than the former. Compared with the forecasting results for which the vapor of the model initial field is adjusted by the background vapor with those by the revised vapor, the nowcasting of the revised vapor is much better than that of background vapor. Analysis of the reasons indicated that when the vapor is adjusted in the model initial field, especially when the saturated vapor is considered, the forecasting of the vapor field is significantly affected. The changed vapor field influences the circulation, which in turn improves the model forecasting of radar reflectivity and rainfall.