The Lajishan orogenic belt is one of the E-W-trending Caledonian orogenicbelts within the Qinling-Qilian orogenic system. It was formed upon the Jiningian basement byintensive taphrogenesis. Its major characteristics ...The Lajishan orogenic belt is one of the E-W-trending Caledonian orogenicbelts within the Qinling-Qilian orogenic system. It was formed upon the Jiningian basement byintensive taphrogenesis. Its major characteristics comprise the prominent faulting along the northand south boundaries, the highly complicated petrological and petro-geochemical features of thevolcanic rock series, and the development of a new type of ophiolite suite. In terms of tectonicanalysis and the sequential analysis of tectonic settings of magmatic rocks, it is suggested thatthe Lajishan orogenic belt has undergone a complete 'opening-closing' cycle, which can be furtherdivided into 3 second-order 'opening-closing' cycles. The composite characteristics of the'opening-closing' movement show that Laji Mountain is a typical fault orogenic belt. The faultorogenic belt is one of the most important types of intracontinental orogens. It is of criticaltheoretical and practical significance to summarize the characteristics and the diagnostic criteriaof this kind of orogenic belts, and study the mechanism of their formation and build models of theirevolution.展开更多
A new method is introduced to suppress the noise in seismic data processing. Based on the subtle difference in shape between the noise and the actual signal, we introduce morphologic filtering into seismic data proces...A new method is introduced to suppress the noise in seismic data processing. Based on the subtle difference in shape between the noise and the actual signal, we introduce morphologic filtering into seismic data processing. From the shape and the S/N we can see that the effect of morphologic filtering is superior to other methods like id-value filtering, neighbor average filtering, etc. The SNR of the signal after morphological filtering is comparatively great. In addition, the precision of the seismic data after morphological filtering is high. The characteristics of the actual signal, such as frequency and amplitude, are preserved. We give an example of the real seismic data processing using morphological filtering, in which the actual signal is retained, while the random high intensity noise was removed.展开更多
We revise some mathematical morphological operators such as Dilation, Erosion, Opening and Closing. We show proofs of our theorems for the above operators when the structural elements are partitioned. Our results show...We revise some mathematical morphological operators such as Dilation, Erosion, Opening and Closing. We show proofs of our theorems for the above operators when the structural elements are partitioned. Our results show that structural elements can be partitioned before carrying out morphological operations.展开更多
基金the Doctoral Programme of Higher Education 97049119 the National Natural Science Foundation of China grant 40072062.
文摘The Lajishan orogenic belt is one of the E-W-trending Caledonian orogenicbelts within the Qinling-Qilian orogenic system. It was formed upon the Jiningian basement byintensive taphrogenesis. Its major characteristics comprise the prominent faulting along the northand south boundaries, the highly complicated petrological and petro-geochemical features of thevolcanic rock series, and the development of a new type of ophiolite suite. In terms of tectonicanalysis and the sequential analysis of tectonic settings of magmatic rocks, it is suggested thatthe Lajishan orogenic belt has undergone a complete 'opening-closing' cycle, which can be furtherdivided into 3 second-order 'opening-closing' cycles. The composite characteristics of the'opening-closing' movement show that Laji Mountain is a typical fault orogenic belt. The faultorogenic belt is one of the most important types of intracontinental orogens. It is of criticaltheoretical and practical significance to summarize the characteristics and the diagnostic criteriaof this kind of orogenic belts, and study the mechanism of their formation and build models of theirevolution.
文摘A new method is introduced to suppress the noise in seismic data processing. Based on the subtle difference in shape between the noise and the actual signal, we introduce morphologic filtering into seismic data processing. From the shape and the S/N we can see that the effect of morphologic filtering is superior to other methods like id-value filtering, neighbor average filtering, etc. The SNR of the signal after morphological filtering is comparatively great. In addition, the precision of the seismic data after morphological filtering is high. The characteristics of the actual signal, such as frequency and amplitude, are preserved. We give an example of the real seismic data processing using morphological filtering, in which the actual signal is retained, while the random high intensity noise was removed.
文摘We revise some mathematical morphological operators such as Dilation, Erosion, Opening and Closing. We show proofs of our theorems for the above operators when the structural elements are partitioned. Our results show that structural elements can be partitioned before carrying out morphological operations.