We propose a hierarchical interconnection network with two-phase bufferless resonant clock distribution, which mixes the advantages of mesh and tree architectures.The problems of skew reduction and variation-tolerance...We propose a hierarchical interconnection network with two-phase bufferless resonant clock distribution, which mixes the advantages of mesh and tree architectures.The problems of skew reduction and variation-tolerance in the mixed interconnection network are studied through a pipelined multiplier under a TSMC 65 nm standard CMOS process.The post-simulation results show that the hierarchical architecture reduces more than 75% and 65%of clock skew compared with pure mesh and pure H-tree networks,respectively.The maximum skew in the proposed clock distribution is less than 7 ps under imbalanced loading and PVT variations,which is no more than 1%of the clock cycle of about 760 ps.展开更多
As technology scales down, clock distribution networks(CDNs) in integrated circuits(ICs) are becoming increasingly sensitive to single-event transients(SETs).The SET occurring in the CDN can even lead to failure of th...As technology scales down, clock distribution networks(CDNs) in integrated circuits(ICs) are becoming increasingly sensitive to single-event transients(SETs).The SET occurring in the CDN can even lead to failure of the entire circuit system. Understanding the factors that influence the SET sensitivity of the CDN is crucial to achieving radiation hardening of the CDN and realizing the design of highly reliable ICs. In this paper, the influences of different sequential elements(D-flip-flops and D-latches, the two most commonly used sequential elements in modern synchronous digital systems) on the SET susceptibility of the CDN were quantitatively studied. Electrical simulation and heavy ion experiment results reveal that the CDN-SET-induced incorrect latching is much more likely to occur in DFF and DFF-based designs. This can supply guidelines for the design of IC with high reliability.展开更多
基金Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(No. 2009ZX01034-001-001-006)the National Natural Science Foundation of China(No.60906014)
文摘We propose a hierarchical interconnection network with two-phase bufferless resonant clock distribution, which mixes the advantages of mesh and tree architectures.The problems of skew reduction and variation-tolerance in the mixed interconnection network are studied through a pipelined multiplier under a TSMC 65 nm standard CMOS process.The post-simulation results show that the hierarchical architecture reduces more than 75% and 65%of clock skew compared with pure mesh and pure H-tree networks,respectively.The maximum skew in the proposed clock distribution is less than 7 ps under imbalanced loading and PVT variations,which is no more than 1%of the clock cycle of about 760 ps.
基金supported by the National Natural Science Foundation of China(No.61434007)the National Natural Science Foundation of China(No.61704192)
文摘As technology scales down, clock distribution networks(CDNs) in integrated circuits(ICs) are becoming increasingly sensitive to single-event transients(SETs).The SET occurring in the CDN can even lead to failure of the entire circuit system. Understanding the factors that influence the SET sensitivity of the CDN is crucial to achieving radiation hardening of the CDN and realizing the design of highly reliable ICs. In this paper, the influences of different sequential elements(D-flip-flops and D-latches, the two most commonly used sequential elements in modern synchronous digital systems) on the SET susceptibility of the CDN were quantitatively studied. Electrical simulation and heavy ion experiment results reveal that the CDN-SET-induced incorrect latching is much more likely to occur in DFF and DFF-based designs. This can supply guidelines for the design of IC with high reliability.