Dry valleys are a striking geographic landscape in Hengduan Mountains Region and are characterized by low rainfall, desert type of vegetation and fragile environment. Past efforts and resources have been concentrated ...Dry valleys are a striking geographic landscape in Hengduan Mountains Region and are characterized by low rainfall, desert type of vegetation and fragile environment. Past efforts and resources have been concentrated mainly on rehabilitation of degraded ecosystem and fragile environment, particularly reforestation, while socio-economic development has been largely overlooked. Despite successes in pocket areas, the overall trend of unsustainability and environmental deterioration are continuing. It is important to understand that uplift of the Tibetan Plateau is the root cause of development of dry valleys, and development and formation of dry valleys is a natural process. Human intervention has played a secondary role in development of dry valleys and degradation of dry valleys though human intervention in many cases has speeded up environmental degradation of the dry valleys. It is important to understand that dry valleys are climatic enclaves and an integrated approach that combines rehabilitation of degraded ecosystems and socio-economic development should be adopted if the overall goal of sustainable development of dry valleys is to be achieved. Promotion of niche-based cash crops, rural energy including hydropower, solar energy, biogas and fuelwood plantation is recommended as the priority activities.展开更多
China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere.Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of ce...China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere.Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of central and south-western China allowed their persistence through the late Neogene climate fluctuations.One of these relict lineages is Dipteronia,an oligotypic tree genus with a fossil record extending to the Paleocene.Here,we investigated the genetic variability,demographic dynamics and diversification patterns of the two currently recognized Dipteronia species(Dipteronia sinensis and D.dyeriana).Molecular data were obtained from 45 populations of Dipteronia by genotyping three cpDNA regions,two single copy nuclear genes and 15 simple sequence repeat loci.The genetic study was combined with niche comparison analyses on the environmental space,ecological niche modeling,and landscape connectivity analysis.We found that the two Dipteronia species have highly diverged both in genetic and ecological terms.Despite the incipient speciation processes that can be observed in D.sinensis,the occurrence of long-term stable refugia and,particularly,a dispersal corridor along Daba Shan-west Qinling,likely ensured its genetic and ecological integrity to date.Our study will not only help us to understand how populations of Dipteronia species responded to the tectonic and climatic changes of the Cenozoic,but also provide insight into how Arcto-Tertiary relict plants in East Asia survived,evolved,and diversified.展开更多
Global climate change poses a new challenge for species and can even push some species toward an extinction vortex. The most affected organisms are those with narrow tolerance to the climatic factors but many large ma...Global climate change poses a new challenge for species and can even push some species toward an extinction vortex. The most affected organisms are those with narrow tolerance to the climatic factors but many large mammals such as ungulates with a wider ecological niche are also being affected indirectly. Our research mainly used wild sheep in central Iran as a model species to explore how the suitable habitats will change under different climatic scenarios and to determine if current borders of protected areas will adequately protect habitat requirements. To create habitat models we used animal-vehicle collision points as an input for species presence data. We ran habitat models using Max Ent modeling approach under different climatic scenarios of the past, present and future(under the climatic scenarios for minimum(RCP2.6) and maximum(RCP8.5) CO2 concentration trajectories). We tried to estimate the overlap and the width of the ecological niche using relevant metrics. In order to analyze the effectiveness of the protected areas, suitable maps were concerted to binary maps using True Skill Statistic(TSS) threshold and measured the similarity of the binary maps for each scenario using Kappa index. In order to assess the competence of the present protected areas boundary in covering the distribution of species, two different scenarios were employed, which are ensemble scenario 1: an ensemble of the binary maps of the species distribution in Mid-Holocene, present, and RCP2.6;and ensemble scenario 2: an ensemble of binary suitability maps in Mid-Holocene, present, and RCP8.5. Then, the borders of modeled habitats with the boundaries of 23 existing protected areas in two central provinces in Iran were compared. The predicted species distribution under scenario 1(RCP2.6) was mostly similar to its current distribution(Kappa = 0.53) while the output model under scenario 2(RCP8.5) indicated a decline in the species distribution range. Under the first ensemble scenario, current borders of the protected areas in Hamedan pr展开更多
Theroleof nicheevolution(niche conservatism or niche divergence)in lineage diversification is a poorly studied area.The Chinese cobra Naja atra(Elapidae)has diverged into three lineages:Lineage E in eastern China,Line...Theroleof nicheevolution(niche conservatism or niche divergence)in lineage diversification is a poorly studied area.The Chinese cobra Naja atra(Elapidae)has diverged into three lineages:Lineage E in eastern China,Lineage S in southern China and Vietnam,and Lineage W in western China.However,whether the ecological niche is conserved or divergent among these three lineages is unknown.In the present study,we used ecological niche models in geographical space to study the ecological differences among lineages.We compared the niche overlap in environmental space to test niche conservatism and niche divergence.Our results showed that the three lineages of N.atra shared an ecological niche space between Lineages E and S/W,with the climatic niches of Lineages S and W representing a specialized fraction of the climatic niche of Lineage E.We speculated that the niche divergence between Lineages S and W was a consequence of geographical barriers limitinggeneflow.Ourstudyprovides evidence for lineage diversification associated with both geographical isolation and climatic niche evolution,suggesting that early niche divergence between Lineages S and W,followed by niche conservatism,causes niche divergence among lineages.展开更多
Subtropical forest in China has received much attention due to its complex geologic environment and bioclimatic heterogeneity.There have been very few studies addressing which climatic factors have shaped both distrib...Subtropical forest in China has received much attention due to its complex geologic environment and bioclimatic heterogeneity.There have been very few studies addressing which climatic factors have shaped both distribution patterns and niche differentiation of species from this region.It also remains unclear whether phylogenetic niche conservatism retains in plant species from this biodiversityrich subtropical region in China.In this study,we used geographic occurrence records and bioclimatic factors of Prunus dielsiana(Rosaceae),a wild cherry species,combined with the classical ENM-based DIVA-GIS software to access contemporary distribution and richness patterns of its natural populations.The current distribution of P.dielsiana occupied a relatively wide range but exhibited an uneven pattern eastward in general,and the core distribution zone of its populations are projected to concentrate in the Wushan and Wuling Mountain ranges of western China.Hydrothermic variables,particularly the Temperature Seasonality(bio4)are screened out quantitatively to be the most influential factors that have shaped the current geographical patterns of P.dielsiana.By comparison with other sympatric families,climatic niche at regional scale showed a pattern of phylogenetic niche conservatism within cherry species of Ros aceae.The effect of habitat filtering from altitude is more significant than those of longitude and latitude.We conclude that habitat filtering dominated by limiting hydrothermic factors is the primary driving process of the diversity pattern of P.dielsiana in subtropical China.展开更多
The climatic niche is a central concept for understanding species distribution,with current and past climate interpreted as strong drivers of present and historical-geographical ranges.Our aim is to understand whether...The climatic niche is a central concept for understanding species distribution,with current and past climate interpreted as strong drivers of present and historical-geographical ranges.Our aim is to understand whether Atlantic Forest snakes follow the general geographical pattern of increasing species climatic niche breadths with increasing latitude.We also tested if there is a tradeoff between temperature and precipitation niche breadths of species in order to understand if species with larger breadths of one niche dimension have stronger dispersal constraints by the other due to narrower niche breadths.Niche breadths were calculated by the subtraction of maximal and minimal values of temperature and precipitation across species ranges.We implemented Phylogenetic Generalized Least Squares to measure the relationship between temperature and precipitation niche breadths and latitude.We also tested phylogenetic signals by Lambda statistics to analyze the degree of phylogenetic niche conservatism to both niche dimensions.Temperature niche breadths were not related to latitude.Precipitation niche breadths decreased with increasing latitude and presented a high phylogenetic signal,that is,significant phylogenetic niche conservatism.We rejected the tradeoff hypotheses of temperature and precipitation niche breadths.Our results also indicate that precipitation should be an important ecological constraint affecting the geographical distribution of snake lineages across the South American Atlantic Forest.We then provide a general view of how phylogenetic niche conservatism could impact the patterns of latitudinal variation of climatic niches across this biodiversity hotspot.展开更多
Unraveling the diversification mechanisms of organisms is a fundamental and important macroevolutionary question regarding the diversity,ecological niche, and morphological divergence of life. However, many studies ha...Unraveling the diversification mechanisms of organisms is a fundamental and important macroevolutionary question regarding the diversity,ecological niche, and morphological divergence of life. However, many studies have only explored diversification mechanisms via isolated factors. Here,based on comparative phylogenetic analysis, we performed a macroevolutionary examination of horseshoe bats(Chiroptera: Rhinolophidae:Rhinolophus), to reveal the inter-relationships among diversification, intrinsic/extrinsic factors, and climatic ecological niche characteristics. Results showed a general slowing trajectory during diversification, with two dispersal events from Asia into Southeast Asia and Africa playing key roles in shaping regional heterogeneous diversity. Morphospace expansions of the investigated traits(e.g., body size,echolocation, and climate niche) revealed a decoupled pattern between diversification trajectory and trait divergence, suggesting that other factors(e.g., biotic interactions) potentially played a key role in recent diversification. Based on ancestral traits and pathway analyses, most Rhinolophus lineages belonging to the same region overlapped with each other geographically and were positively associated with the diversification rate, implying a competitive prelude to speciation. Overall, our study showed that multiple approaches need to be integrated to address diversification history. Rather than a single factor, the joint effects of multiple factors(biogeography, environmental drivers, and competition) are responsible for the current diversity patterns in horseshoe bats, and a corresponding multifaceted strategy is recommended to study these patterns in the future.展开更多
Modern and paleoclimate changes may have altered species dynamics by shifting species’niche suitability over space and time.We analyze whether the current genetic structure and isolation of the two large American fel...Modern and paleoclimate changes may have altered species dynamics by shifting species’niche suitability over space and time.We analyze whether the current genetic structure and isolation of the two large American felids,jaguar(Panthera onca)and puma(Puma concolor),are mediated by changes in climatic suitability and connection routes over modern and paleoclimatic landscapes.We estimate species distribution under 5 climatic landscapes(modern,Holocene,last maximum glaciations[LMG],average suitability,and climatic instability)and correlate them with individuals’genetic isolation through causal modeling on a resemblance matrix.Both species exhibit genetic isolation patterns correlated with LMG climatic suitability,suggesting that these areas may have worked as“allele refuges.”However,the jaguar showed higher vulnerability to climate changes,responding to modern climatic suitability and connection routes,whereas the puma showed a continuous and gradual transition of genetic variation.Despite differential responsiveness to climate change,both species are subjected to the climatic effects on genetic configuration,which may make them susceptible to future climatic changes,since these are progressing faster and with higher intensity than changes in the paleoclimate.Thus,the effects of climatic changes should be considered in the design of conservation strategies to ensure evolutionary and demographic processes mediated by gene flow for both species.展开更多
We tested two questions:(i)whether the climatic conditions of the Azorean Islands in Portugal may have restricted the invasion of Harmonia axyridis across this archipelago and(ii)determine what population of this spec...We tested two questions:(i)whether the climatic conditions of the Azorean Islands in Portugal may have restricted the invasion of Harmonia axyridis across this archipelago and(ii)determine what population of this species could have a higher probability of invading the islands.We used MaxEnt to project the climate requirements of different H.axyridis populations from three regions of the world,and the potential global niche of the species in the Azorean islands.Then we assessed the suitability of the islands for each of the three H.axyridis populations and global potential niche through histograms analysis,Principal Component Analysis(PCA)of climate variables,and a variable-by-variable assessment of the suitability response curves compared with the climatic conditions of the Azores.Climatic conditions of the Azores are less suitable for the U.S.and native Asian populations of H.axyridis,and more suitable for European populations and the global potential niche.The PCA showed that the climatic conditions of the islands differed from the climatic requirements of H.axyridis.This difference is mainly explained by precipitation of the wettest month,isothermality,and the minimum temperature of the coldest month.We concluded that the climatic conditions of the Azores could have influenced the establishment and spread of H.axyridis on these islands from Europe.Our results showed that abiotic resistance represented by the climate of the potentially colonizable zones could hinder the establishment of invasive insects,but it could vary depending of the origin of the colonizing population.展开更多
Measuring climatic niche position and breadth may help to determine where species can occur over space and time. Using GIS-based and phylogenetic comparative methods, we investigated global patterns of variation in cl...Measuring climatic niche position and breadth may help to determine where species can occur over space and time. Using GIS-based and phylogenetic comparative methods, we investigated global patterns of variation in climatic niche breadth in lacertid lizards to test the following three hypotheses about climatic niche widths. First, does a species' temperature or precipitation niche breadth relate to its temperature or precipitation niche position(the mean value of annual mean temperature or annual precipitation across sampled localities in the range of each species)? Second, are there trade-offs between a species' temperature niche breadth and precipitation niche breadth? Third, does a species' temperature or precipitation niche breadth relate to altitude or latitude? We expect that:(1) species distributed in cold regions are specialized for low-temperature environments(i.e. narrow niche breadth center around low temperatures);(2) a negative relationship between species niche breadth on temperature and precipitation axes according to the tradeoff hypothesis(i.e. species that tolerate a broad range of precipitation regimes cannot also tolerate a broad range of temperatures);(3) precipitation niche breadth decreases with altitude or latitude, whereas temperature climatic niche breadth increases with altitude or latitude. Based on the analytical results we found that:(1) temperature niche breadth and position are negatively related, while precipitation niche breadth and position are positively related;(2) there is no trade-off between temperature and precipitation niche breadths; and (3) temperature niche breadth and latitude/altitude are positively related, but precipitation niche breadth and latitude/altitude are not significantly related. Our results show many similarities with previous studies on climatic niche widths reported for amphibians and lizards, which provide further evidence that such macroecological patterns of variation in climatic niche breadths may be widespread.展开更多
Climate change is threatening natural ecosystems in the Earth, and arid regions of southern Africa are particularly exposed to further drying. Welwitschia mirabilis Hook. (Welwitschiaceae) is an unusual gymnosperm t...Climate change is threatening natural ecosystems in the Earth, and arid regions of southern Africa are particularly exposed to further drying. Welwitschia mirabilis Hook. (Welwitschiaceae) is an unusual gymnosperm tree that is recognized as an icon of the Namib Desert, southern Africa. Many aspects of its biology were investigated in the past, with a special emphasis for its physiology and adaptations, but nothing is known about its potential sensitivity to current climate changes. In this study, we adopted an approach based on distribution data for W. mirabilis and ecological niche models for clarifying the species-climate interactions and for predicting the potential impacts of climate change on W. mirabilis populations in three well-separated sub-ranges (northern, southern and central) in northwestern Namibia, southern Africa. We evidenced that the populations occurring in the northern sub-range have peculiar climatic exigencies compared with those in the central and southern sub-ranges and are particularly exposed to the impact of climate change, which will consist of a substantial increase in temperature across the region. These impacts could be represented by demographic changes that should be detected and monitored detailedly to plan efficient measures for managing populations of this important species on the long-term scale.展开更多
基金supported jointly by the National Key Project for Basic Research on Tibetan Plateau(G1998040800)Promotion Plan of the Ministry of Education and President Foundation of the Chinese Academy of Sciences.
文摘Dry valleys are a striking geographic landscape in Hengduan Mountains Region and are characterized by low rainfall, desert type of vegetation and fragile environment. Past efforts and resources have been concentrated mainly on rehabilitation of degraded ecosystem and fragile environment, particularly reforestation, while socio-economic development has been largely overlooked. Despite successes in pocket areas, the overall trend of unsustainability and environmental deterioration are continuing. It is important to understand that uplift of the Tibetan Plateau is the root cause of development of dry valleys, and development and formation of dry valleys is a natural process. Human intervention has played a secondary role in development of dry valleys and degradation of dry valleys though human intervention in many cases has speeded up environmental degradation of the dry valleys. It is important to understand that dry valleys are climatic enclaves and an integrated approach that combines rehabilitation of degraded ecosystems and socio-economic development should be adopted if the overall goal of sustainable development of dry valleys is to be achieved. Promotion of niche-based cash crops, rural energy including hydropower, solar energy, biogas and fuelwood plantation is recommended as the priority activities.
基金co-supported by the National Natural Science Foundation of China(Grant No.31470311)the Ph.D.Programs Foundation of the Ministry of Education of China(Grant No.20136101130001).
文摘China is a hotspot of relict plant species that were once widespread throughout the Northern Hemisphere.Recent research has demonstrated that the occurrence of long-term stable refugia in the mountainous regions of central and south-western China allowed their persistence through the late Neogene climate fluctuations.One of these relict lineages is Dipteronia,an oligotypic tree genus with a fossil record extending to the Paleocene.Here,we investigated the genetic variability,demographic dynamics and diversification patterns of the two currently recognized Dipteronia species(Dipteronia sinensis and D.dyeriana).Molecular data were obtained from 45 populations of Dipteronia by genotyping three cpDNA regions,two single copy nuclear genes and 15 simple sequence repeat loci.The genetic study was combined with niche comparison analyses on the environmental space,ecological niche modeling,and landscape connectivity analysis.We found that the two Dipteronia species have highly diverged both in genetic and ecological terms.Despite the incipient speciation processes that can be observed in D.sinensis,the occurrence of long-term stable refugia and,particularly,a dispersal corridor along Daba Shan-west Qinling,likely ensured its genetic and ecological integrity to date.Our study will not only help us to understand how populations of Dipteronia species responded to the tectonic and climatic changes of the Cenozoic,but also provide insight into how Arcto-Tertiary relict plants in East Asia survived,evolved,and diversified.
文摘Global climate change poses a new challenge for species and can even push some species toward an extinction vortex. The most affected organisms are those with narrow tolerance to the climatic factors but many large mammals such as ungulates with a wider ecological niche are also being affected indirectly. Our research mainly used wild sheep in central Iran as a model species to explore how the suitable habitats will change under different climatic scenarios and to determine if current borders of protected areas will adequately protect habitat requirements. To create habitat models we used animal-vehicle collision points as an input for species presence data. We ran habitat models using Max Ent modeling approach under different climatic scenarios of the past, present and future(under the climatic scenarios for minimum(RCP2.6) and maximum(RCP8.5) CO2 concentration trajectories). We tried to estimate the overlap and the width of the ecological niche using relevant metrics. In order to analyze the effectiveness of the protected areas, suitable maps were concerted to binary maps using True Skill Statistic(TSS) threshold and measured the similarity of the binary maps for each scenario using Kappa index. In order to assess the competence of the present protected areas boundary in covering the distribution of species, two different scenarios were employed, which are ensemble scenario 1: an ensemble of the binary maps of the species distribution in Mid-Holocene, present, and RCP2.6;and ensemble scenario 2: an ensemble of binary suitability maps in Mid-Holocene, present, and RCP8.5. Then, the borders of modeled habitats with the boundaries of 23 existing protected areas in two central provinces in Iran were compared. The predicted species distribution under scenario 1(RCP2.6) was mostly similar to its current distribution(Kappa = 0.53) while the output model under scenario 2(RCP8.5) indicated a decline in the species distribution range. Under the first ensemble scenario, current borders of the protected areas in Hamedan pr
基金supported by grants from the National Natural Science Foundation of China (32071493, 31971414 and 31770443)Finance Science and Technology Project of Hainan Province (ZDYF2018219)
文摘Theroleof nicheevolution(niche conservatism or niche divergence)in lineage diversification is a poorly studied area.The Chinese cobra Naja atra(Elapidae)has diverged into three lineages:Lineage E in eastern China,Lineage S in southern China and Vietnam,and Lineage W in western China.However,whether the ecological niche is conserved or divergent among these three lineages is unknown.In the present study,we used ecological niche models in geographical space to study the ecological differences among lineages.We compared the niche overlap in environmental space to test niche conservatism and niche divergence.Our results showed that the three lineages of N.atra shared an ecological niche space between Lineages E and S/W,with the climatic niches of Lineages S and W representing a specialized fraction of the climatic niche of Lineage E.We speculated that the niche divergence between Lineages S and W was a consequence of geographical barriers limitinggeneflow.Ourstudyprovides evidence for lineage diversification associated with both geographical isolation and climatic niche evolution,suggesting that early niche divergence between Lineages S and W,followed by niche conservatism,causes niche divergence among lineages.
基金funded by the Three New Forestry Project of Jiangsuthe Forestry Technological Innovation and Promotion Program of Jiangsu Province+1 种基金the Postgraduate Research and Practice Innovation Program of Jiangsu Provincethe Doctorate Fellowship Foundation of Nanjing Forestry University,grant number,LYSX[2015]17,LYKJ[2018]29 and KYCX17-0815,respectively。
文摘Subtropical forest in China has received much attention due to its complex geologic environment and bioclimatic heterogeneity.There have been very few studies addressing which climatic factors have shaped both distribution patterns and niche differentiation of species from this region.It also remains unclear whether phylogenetic niche conservatism retains in plant species from this biodiversityrich subtropical region in China.In this study,we used geographic occurrence records and bioclimatic factors of Prunus dielsiana(Rosaceae),a wild cherry species,combined with the classical ENM-based DIVA-GIS software to access contemporary distribution and richness patterns of its natural populations.The current distribution of P.dielsiana occupied a relatively wide range but exhibited an uneven pattern eastward in general,and the core distribution zone of its populations are projected to concentrate in the Wushan and Wuling Mountain ranges of western China.Hydrothermic variables,particularly the Temperature Seasonality(bio4)are screened out quantitatively to be the most influential factors that have shaped the current geographical patterns of P.dielsiana.By comparison with other sympatric families,climatic niche at regional scale showed a pattern of phylogenetic niche conservatism within cherry species of Ros aceae.The effect of habitat filtering from altitude is more significant than those of longitude and latitude.We conclude that habitat filtering dominated by limiting hydrothermic factors is the primary driving process of the diversity pattern of P.dielsiana in subtropical China.
基金Fundação de AmparoàPesquisa do Estado de São Paulo(FAPESP procs.2008/50068-2,2014/23677-9 and 2020/12658-4)Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq,405447/2016-7)RJS thanks CNPq for the research fellowship(312795/2018-1).
文摘The climatic niche is a central concept for understanding species distribution,with current and past climate interpreted as strong drivers of present and historical-geographical ranges.Our aim is to understand whether Atlantic Forest snakes follow the general geographical pattern of increasing species climatic niche breadths with increasing latitude.We also tested if there is a tradeoff between temperature and precipitation niche breadths of species in order to understand if species with larger breadths of one niche dimension have stronger dispersal constraints by the other due to narrower niche breadths.Niche breadths were calculated by the subtraction of maximal and minimal values of temperature and precipitation across species ranges.We implemented Phylogenetic Generalized Least Squares to measure the relationship between temperature and precipitation niche breadths and latitude.We also tested phylogenetic signals by Lambda statistics to analyze the degree of phylogenetic niche conservatism to both niche dimensions.Temperature niche breadths were not related to latitude.Precipitation niche breadths decreased with increasing latitude and presented a high phylogenetic signal,that is,significant phylogenetic niche conservatism.We rejected the tradeoff hypotheses of temperature and precipitation niche breadths.Our results also indicate that precipitation should be an important ecological constraint affecting the geographical distribution of snake lineages across the South American Atlantic Forest.We then provide a general view of how phylogenetic niche conservatism could impact the patterns of latitudinal variation of climatic niches across this biodiversity hotspot.
基金supported by the National Natural Science Foundation of China(31970394,32192421,31300314)Special Foundation for National Science and Technology Basic Research Program of China(2021FY100303)。
文摘Unraveling the diversification mechanisms of organisms is a fundamental and important macroevolutionary question regarding the diversity,ecological niche, and morphological divergence of life. However, many studies have only explored diversification mechanisms via isolated factors. Here,based on comparative phylogenetic analysis, we performed a macroevolutionary examination of horseshoe bats(Chiroptera: Rhinolophidae:Rhinolophus), to reveal the inter-relationships among diversification, intrinsic/extrinsic factors, and climatic ecological niche characteristics. Results showed a general slowing trajectory during diversification, with two dispersal events from Asia into Southeast Asia and Africa playing key roles in shaping regional heterogeneous diversity. Morphospace expansions of the investigated traits(e.g., body size,echolocation, and climate niche) revealed a decoupled pattern between diversification trajectory and trait divergence, suggesting that other factors(e.g., biotic interactions) potentially played a key role in recent diversification. Based on ancestral traits and pathway analyses, most Rhinolophus lineages belonging to the same region overlapped with each other geographically and were positively associated with the diversification rate, implying a competitive prelude to speciation. Overall, our study showed that multiple approaches need to be integrated to address diversification history. Rather than a single factor, the joint effects of multiple factors(biogeography, environmental drivers, and competition) are responsible for the current diversity patterns in horseshoe bats, and a corresponding multifaceted strategy is recommended to study these patterns in the future.
基金supported by the French Agence Nationale de la Recherche(project MARIS ANR-14-CE03-0007-01andprojectSWATCHANR-18-PRIM-0006)by the'Institut national de recherche pour I'agriculture,I'alimentation et I'environnement'(INRAE)supported by the Conseil Regional de La Réunion,the French Ministry of Agriculture and Food,the European Union(Feader program,grant n°AG/974/DAAF/2016-00096 and Feder program,grant n°GURTDI20151501-0000735).
基金supported by project CGL2010-16902 of the Spanish Ministry of Research and Innovation,project CGL2013-46026-P of Ministerio de Economía,Industria y Competitividad,excellence project RNM2300 of Junta de Andalucía(Spain),the Formación de Profe-sorado Universitario fellowship#AP2010-5373 from the Spanish Ministry of Education,and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil(CAPES)(Finance Code 001).L.P.C.has a fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq).M.Z.is supported by CAPES(grant number 88887.478136/2020-00)through the Program of National Cooperation in the Amazon(Programa Nacional De Cooperação Acadêmica na Amazônia).
文摘Modern and paleoclimate changes may have altered species dynamics by shifting species’niche suitability over space and time.We analyze whether the current genetic structure and isolation of the two large American felids,jaguar(Panthera onca)and puma(Puma concolor),are mediated by changes in climatic suitability and connection routes over modern and paleoclimatic landscapes.We estimate species distribution under 5 climatic landscapes(modern,Holocene,last maximum glaciations[LMG],average suitability,and climatic instability)and correlate them with individuals’genetic isolation through causal modeling on a resemblance matrix.Both species exhibit genetic isolation patterns correlated with LMG climatic suitability,suggesting that these areas may have worked as“allele refuges.”However,the jaguar showed higher vulnerability to climate changes,responding to modern climatic suitability and connection routes,whereas the puma showed a continuous and gradual transition of genetic variation.Despite differential responsiveness to climate change,both species are subjected to the climatic effects on genetic configuration,which may make them susceptible to future climatic changes,since these are progressing faster and with higher intensity than changes in the paleoclimate.Thus,the effects of climatic changes should be considered in the design of conservation strategies to ensure evolutionary and demographic processes mediated by gene flow for both species.
文摘We tested two questions:(i)whether the climatic conditions of the Azorean Islands in Portugal may have restricted the invasion of Harmonia axyridis across this archipelago and(ii)determine what population of this species could have a higher probability of invading the islands.We used MaxEnt to project the climate requirements of different H.axyridis populations from three regions of the world,and the potential global niche of the species in the Azorean islands.Then we assessed the suitability of the islands for each of the three H.axyridis populations and global potential niche through histograms analysis,Principal Component Analysis(PCA)of climate variables,and a variable-by-variable assessment of the suitability response curves compared with the climatic conditions of the Azores.Climatic conditions of the Azores are less suitable for the U.S.and native Asian populations of H.axyridis,and more suitable for European populations and the global potential niche.The PCA showed that the climatic conditions of the islands differed from the climatic requirements of H.axyridis.This difference is mainly explained by precipitation of the wettest month,isothermality,and the minimum temperature of the coldest month.We concluded that the climatic conditions of the Azores could have influenced the establishment and spread of H.axyridis on these islands from Europe.Our results showed that abiotic resistance represented by the climate of the potentially colonizable zones could hinder the establishment of invasive insects,but it could vary depending of the origin of the colonizing population.
基金Financial support was provided by grants from Zhejiang Provincial Natural Science Foundation (LY17C030003)Natural Science Foundation of China (31270571)Science and Technology Bureau of Sanya (2013YD08)
文摘Measuring climatic niche position and breadth may help to determine where species can occur over space and time. Using GIS-based and phylogenetic comparative methods, we investigated global patterns of variation in climatic niche breadth in lacertid lizards to test the following three hypotheses about climatic niche widths. First, does a species' temperature or precipitation niche breadth relate to its temperature or precipitation niche position(the mean value of annual mean temperature or annual precipitation across sampled localities in the range of each species)? Second, are there trade-offs between a species' temperature niche breadth and precipitation niche breadth? Third, does a species' temperature or precipitation niche breadth relate to altitude or latitude? We expect that:(1) species distributed in cold regions are specialized for low-temperature environments(i.e. narrow niche breadth center around low temperatures);(2) a negative relationship between species niche breadth on temperature and precipitation axes according to the tradeoff hypothesis(i.e. species that tolerate a broad range of precipitation regimes cannot also tolerate a broad range of temperatures);(3) precipitation niche breadth decreases with altitude or latitude, whereas temperature climatic niche breadth increases with altitude or latitude. Based on the analytical results we found that:(1) temperature niche breadth and position are negatively related, while precipitation niche breadth and position are positively related;(2) there is no trade-off between temperature and precipitation niche breadths; and (3) temperature niche breadth and latitude/altitude are positively related, but precipitation niche breadth and latitude/altitude are not significantly related. Our results show many similarities with previous studies on climatic niche widths reported for amphibians and lizards, which provide further evidence that such macroecological patterns of variation in climatic niche breadths may be widespread.
基金supported by the LifeWatch-ITA European Research Infrastructure on Biodiversity and the Project LIFE+Man For C.BD.(LIFE09 ENV/IT/000078)
文摘Climate change is threatening natural ecosystems in the Earth, and arid regions of southern Africa are particularly exposed to further drying. Welwitschia mirabilis Hook. (Welwitschiaceae) is an unusual gymnosperm tree that is recognized as an icon of the Namib Desert, southern Africa. Many aspects of its biology were investigated in the past, with a special emphasis for its physiology and adaptations, but nothing is known about its potential sensitivity to current climate changes. In this study, we adopted an approach based on distribution data for W. mirabilis and ecological niche models for clarifying the species-climate interactions and for predicting the potential impacts of climate change on W. mirabilis populations in three well-separated sub-ranges (northern, southern and central) in northwestern Namibia, southern Africa. We evidenced that the populations occurring in the northern sub-range have peculiar climatic exigencies compared with those in the central and southern sub-ranges and are particularly exposed to the impact of climate change, which will consist of a substantial increase in temperature across the region. These impacts could be represented by demographic changes that should be detected and monitored detailedly to plan efficient measures for managing populations of this important species on the long-term scale.