The quantification of phosphorus(P) in bulk soil and P distribution in different size fractions of water-stable aggregates(WSAs)are important for assessing potential P loss through runoff. We evaluated available and t...The quantification of phosphorus(P) in bulk soil and P distribution in different size fractions of water-stable aggregates(WSAs)are important for assessing potential P loss through runoff. We evaluated available and total P distribution within WSAs of a sitty clay to clay soil in a long-term fertility experiment of a rice-wheat cropping system in India. Surface soil samples were collected from seven plots amended with NPK fertilizers in combination with or without organic amendments, farmyard manure(FYM), green manure(GM), and paddy straw(PS). The plot with no NPK fertilizers or organic amendments was set as a control. The soil samples were separated by wet sieving into four soil aggregate size fractions: large macroaggregates(> 2.0 mm), small macroaggregates(0.25–2.0 mm), fine microaggregates(0.05–0.25 mm), and a silt + clay-sized fraction(< 0.05 mm). Structural indices were higher in the soil receiving organic amendments than in the soil receiving inorganic fertilizer alone. Organically amended soil had a higher proportion of stable macroaggregates than the control and the soil receiving inorganic fertilizer alone, which were rich in microaggregates. Total and available P contents within WSAs were inversely related to the aggregate size, irrespective of treatment. The distribution of available and total P in the soil aggregate size fraction was as follows: silt + clay-size fraction > small macroaggregates > fine microaggregates> large macroaggregates. Within a size class, aggregate-associated available and total P contents in the organically amended soil were in the following order: FYM > PS ≥ GM. The available P content of the microaggregates(< 0.25 mm) was 8-to 10-times higher than that of the macroaggregates(> 0.25 mm), and the total P content of the microaggregates was 4-to 5-times higher than that of the macroaggregates. Cultivation without organic amendments resulted in more microaggregates that could be checked by the application of organic amendments such as FYM and GM, which increased the proport展开更多
This study aims to examine the effect of clay micro particles addition on the microstructure,wear and corrosion behavior of PEO coatings on AM 50 magnesium alloy.PEO coatings were prepared using an aluminate-based ele...This study aims to examine the effect of clay micro particles addition on the microstructure,wear and corrosion behavior of PEO coatings on AM 50 magnesium alloy.PEO coatings were prepared using an aluminate-based electrolyte with and without the presence of 5 g/L clay particles.The structure and composition of the coatings were evaluated using SEM,EDS and XRD.The wear investigations were conducted using a ball-on-disk tribometer at 2,5 and 10 N loads.The corrosion behavior of the coatings was examined using polarization and EIS tests in 0.5 wt.%NaCl.The results revealed that the addition of clay particles deteriorated the wear resistance of the coatings under the loads of 5 and 10 N.The SEM examinations of the worn surfaces indicated that a combination of adhesive and abrasive wear mechanisms was activated for the coating with clay particles.The poor wear performance of the clay-incorporated coating was related to its lower adhesion strength and higher roughness.The potentiodynamic polarization examinations revealed that the addition of clay particles slightly decreased the corrosion rate of the coatings.Corrosion resistance of the clay-containing coating was attributed to its compactness,as indicated by the results of EIS tests.展开更多
To understand the mesoscopic mechanism of clayey soil in view of macroscopic behavior, it is essential to quantitatively calculate the electric double-layer repulsion between arbitrarily inclined clay particles.Howeve...To understand the mesoscopic mechanism of clayey soil in view of macroscopic behavior, it is essential to quantitatively calculate the electric double-layer repulsion between arbitrarily inclined clay particles.However, suitable calculation methods with high efficiency and accuracy are still rare at present in literature. Based on a great number of numerical calculations of the repulsion between two inclined platy clay particles, explicit empirical formulae for estimating electric double-layer repulsion between clay particles are put forward. Comparison between the empirical solutions and corresponding numerical results shows that the proposed formulae have a reasonable accuracy, and application of the presented formula is easy and efficient.展开更多
文摘The quantification of phosphorus(P) in bulk soil and P distribution in different size fractions of water-stable aggregates(WSAs)are important for assessing potential P loss through runoff. We evaluated available and total P distribution within WSAs of a sitty clay to clay soil in a long-term fertility experiment of a rice-wheat cropping system in India. Surface soil samples were collected from seven plots amended with NPK fertilizers in combination with or without organic amendments, farmyard manure(FYM), green manure(GM), and paddy straw(PS). The plot with no NPK fertilizers or organic amendments was set as a control. The soil samples were separated by wet sieving into four soil aggregate size fractions: large macroaggregates(> 2.0 mm), small macroaggregates(0.25–2.0 mm), fine microaggregates(0.05–0.25 mm), and a silt + clay-sized fraction(< 0.05 mm). Structural indices were higher in the soil receiving organic amendments than in the soil receiving inorganic fertilizer alone. Organically amended soil had a higher proportion of stable macroaggregates than the control and the soil receiving inorganic fertilizer alone, which were rich in microaggregates. Total and available P contents within WSAs were inversely related to the aggregate size, irrespective of treatment. The distribution of available and total P in the soil aggregate size fraction was as follows: silt + clay-size fraction > small macroaggregates > fine microaggregates> large macroaggregates. Within a size class, aggregate-associated available and total P contents in the organically amended soil were in the following order: FYM > PS ≥ GM. The available P content of the microaggregates(< 0.25 mm) was 8-to 10-times higher than that of the macroaggregates(> 0.25 mm), and the total P content of the microaggregates was 4-to 5-times higher than that of the macroaggregates. Cultivation without organic amendments resulted in more microaggregates that could be checked by the application of organic amendments such as FYM and GM, which increased the proport
文摘This study aims to examine the effect of clay micro particles addition on the microstructure,wear and corrosion behavior of PEO coatings on AM 50 magnesium alloy.PEO coatings were prepared using an aluminate-based electrolyte with and without the presence of 5 g/L clay particles.The structure and composition of the coatings were evaluated using SEM,EDS and XRD.The wear investigations were conducted using a ball-on-disk tribometer at 2,5 and 10 N loads.The corrosion behavior of the coatings was examined using polarization and EIS tests in 0.5 wt.%NaCl.The results revealed that the addition of clay particles deteriorated the wear resistance of the coatings under the loads of 5 and 10 N.The SEM examinations of the worn surfaces indicated that a combination of adhesive and abrasive wear mechanisms was activated for the coating with clay particles.The poor wear performance of the clay-incorporated coating was related to its lower adhesion strength and higher roughness.The potentiodynamic polarization examinations revealed that the addition of clay particles slightly decreased the corrosion rate of the coatings.Corrosion resistance of the clay-containing coating was attributed to its compactness,as indicated by the results of EIS tests.
基金the financial support from"The Fundamental Research Funds for the Central Universities"(Grant No.2017XKQY052)
文摘To understand the mesoscopic mechanism of clayey soil in view of macroscopic behavior, it is essential to quantitatively calculate the electric double-layer repulsion between arbitrarily inclined clay particles.However, suitable calculation methods with high efficiency and accuracy are still rare at present in literature. Based on a great number of numerical calculations of the repulsion between two inclined platy clay particles, explicit empirical formulae for estimating electric double-layer repulsion between clay particles are put forward. Comparison between the empirical solutions and corresponding numerical results shows that the proposed formulae have a reasonable accuracy, and application of the presented formula is easy and efficient.