期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
基于小波变换的高分辨率影像纹理结构分类方法 被引量:26
1
作者 陈杉 秦其明 《地理与地理信息科学》 CSSCI CSCD 北大核心 2003年第3期6-9,共4页
该文提出了利用小波变换获取纹理结构子图像能量参数,并用这些参数进行高分辨率图像纹理结构分类的新方法。由阐述遥感影像纹理结构识别原理入手,提出影像纹理结构特征抽取的小波变换方法,构造了有明确的数学和物理意义的参数来描述影... 该文提出了利用小波变换获取纹理结构子图像能量参数,并用这些参数进行高分辨率图像纹理结构分类的新方法。由阐述遥感影像纹理结构识别原理入手,提出影像纹理结构特征抽取的小波变换方法,构造了有明确的数学和物理意义的参数来描述影像纹理信息,在此基础上利用这些参数进行影像纹理结构分类。试验结果表明,小波变换方法适用于具有规则和较强方向性的纹理结构影像分类。 展开更多
关键词 小波变换 纹理结构 高分辨率影像 图像分类 子图像能量 遥感影像
下载PDF
基于多特征卷积神经网路的运动想象脑电信号分析及意图识别 被引量:15
2
作者 何群 邵丹丹 +2 位作者 王煜文 张园园 谢平 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第1期138-146,共9页
为了准确提取个体运动想象脑电信号的最优时段和频段特征以及有效提高其分类准确率,结合卷积神经网络和集成分类方法提出一种多特征卷积神经网络(MFCNN)算法,对运动想象脑电信号进行分类识别。首先对脑电信号进行预处理,然后将原始信号... 为了准确提取个体运动想象脑电信号的最优时段和频段特征以及有效提高其分类准确率,结合卷积神经网络和集成分类方法提出一种多特征卷积神经网络(MFCNN)算法,对运动想象脑电信号进行分类识别。首先对脑电信号进行预处理,然后将原始信号、能量特征、功率谱特征以及融合特征分别输入到卷积神经网络中得到其训练模型,最后通过加权投票的集成分类方法得到最终的分类结果。并利用2008年BCI竞赛Datasets 2b数据集和实测数据对所提出的方法进行实验分析。结果表明,所提的MFCNN方法可有效提高运动想象识别率,实验中所有受试者的平均分类正确率和平均Kappa值分别为78.6%和0.57,为运动想象类脑机接口的应用提供了新的思路和方法。 展开更多
关键词 脑机接口 卷积神经网络 集成分类 运动想象
下载PDF
航空遥感影像上震害解译的结构模型与几何特征的获取 被引量:10
3
作者 王丹 丁军 《灾害学》 CSCD 1997年第1期1-6,共6页
首先给出了基于航空遥感影像的震害分类方案及各种震害在遥感图像上的主要特征,提出了一种震害解译的结构模型。然后讨论了震害的几何测度指标,并研究了震害几何特征的获取,最后对遥感影像震害解译的前景进行了展望。
关键词 地震灾害 分类 航空遥感 影像解译 结构模型
下载PDF
基于径向基函数网络的云自动分类研究 被引量:8
4
作者 蒋德明 陈渭民 +1 位作者 傅炳珊 王建凯 《南京气象学院学报》 CSCD 北大核心 2003年第1期89-95,共7页
采用 GMS- 5红外 ( 1 0 .5~ 1 2 .5μm)和可见光 ( 0 .55~ 0 .9μm)两通道资料 ,采集了 1 999年 7— 1 0月中国东南沿海 57区、58区和 59区包括晴空在内的 1 2类云目标样本 2 91 2个 ,采样窗尺寸为 8× 8像素 ,随机生成训练和测... 采用 GMS- 5红外 ( 1 0 .5~ 1 2 .5μm)和可见光 ( 0 .55~ 0 .9μm)两通道资料 ,采集了 1 999年 7— 1 0月中国东南沿海 57区、58区和 59区包括晴空在内的 1 2类云目标样本 2 91 2个 ,采样窗尺寸为 8× 8像素 ,随机生成训练和测试两个样本子集。对径向基函数网络 ( radial base function neural network,RBF)在云分类问题研究中的应用价值进行了全面的测试与分析 ,得到了肯定的结论 ,提出了优化设计的方法。对6类云型分类试验 ,平均正确率为 86 % ;对 1 1类云型分类试验 ,平均正确率为6 7%。采用自组织竞争神经网络实现寻找 RBF神经网络的隐层神经元中心。在特征空间生成过程中 ,采用小波包分解算法实现模式特征抽出。结果表明 ,小波包分解特征能很好地描述不同云型的差异。 展开更多
关键词 径向基函数网络 云分类 神经网络 卫星图像 小波包分解算法
下载PDF
Migration and Spatiotemporal Land Cover Change: A Case of Bosomtwe Lake Basin, Ghana
5
作者 Richard Kwabena Adams Lingling Zhang Zongzhi Wang 《Advances in Remote Sensing》 2024年第1期18-40,共23页
Internal migration is highly valued due to its increasingly acknowledged potential for social and economic development. However, despite its significant contribution to the development of towns and cities, it has led ... Internal migration is highly valued due to its increasingly acknowledged potential for social and economic development. However, despite its significant contribution to the development of towns and cities, it has led to the deterioration of many ecosystems globally. Lake Bosomtwe, a natural Lake in Ghana and one of the six major meteoritic lakes in the world is affected by land cover changes caused by the rising effects of migration, population expansion, and urbanization, owing to the development of tourist facilities on the lakeshore. This study investigated land cover change trajectories using a post-classification comparison approach and identified the factors influencing alteration in the Lake Bosomtwe Basin. Using Landsat imagery, an integrated approach of remote sensing, geographical information systems (GIS), and statistical analysis was successfully employed to analyze the land cover change of the basin. The findings show that over the 17 years, the basin’s forest cover decreased significantly by 16.02%, indicating that population expansion significantly affects changes in land cover. Ultimately, this study will raise the awareness of stakeholders, decision-makers, policy-makers, government, and non-governmental agencies to evaluate land use development patterns, optimize land use structures, and provide a reference for the formulation of sustainable development policies to promote the sustainable development of the ecological environment. 展开更多
关键词 Land Cover Change Supervised classification MIGRATION Landsat imagery Environmental Sustainability
下载PDF
从“物我”双因素角度探讨“意象”美的分类及美育实践 被引量:1
6
作者 金旻逸 李俊松 +3 位作者 晋永 吴平 周婉 郑小宇 《中医教育》 2024年第1期72-77,共6页
美育实践创新是推进新时代高校美育改革发展的重要途径。如何基于美学理论,融合多学科资源,创新美育实践体验,实现美育育人是高校美育教学改革研究的一大热点。“意象”是中国古典美学的核心范畴之一,根植于“意象论”的审美实践在高校... 美育实践创新是推进新时代高校美育改革发展的重要途径。如何基于美学理论,融合多学科资源,创新美育实践体验,实现美育育人是高校美育教学改革研究的一大热点。“意象”是中国古典美学的核心范畴之一,根植于“意象论”的审美实践在高校美育研究中并不多见,存在理论依据、方法、案例缺失等不足。通过解析“意象”生成的2个关键元素“物”与“我”,创构“物我”双因素意象分类法,演绎出“物本”“物境”“物善”“物韵”“物我”5种相对独立又相互关联,连续渐变的“意象”美。同时,以中医本草为载体,运用新方法赏析、创作不同的本草之美,探讨中国美学“意象论”指导审美实践,实现美育与专业教育融合的可行性,增强高校美育实效,为开展符合新时代需求的美育实践提供普适性的新方法与新手段。 展开更多
关键词 “物我”双因素 意象分类法 本草审美 美育实践
原文传递
基于地形区域分割的复杂地区遥感影像分类 被引量:6
7
作者 黄微 张良培 李平湘 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2007年第9期791-795,共5页
提出了一种基于地形区域分割的分类方法,在影像中利用地形特征数据预先划分出每种地物的分布区域,然后以区域为基本单位对影像进行分类,同时利用DEM数据对影像进行地形校正,减小了同种地物内部由于地形起伏造成的光谱离散的现象。利用... 提出了一种基于地形区域分割的分类方法,在影像中利用地形特征数据预先划分出每种地物的分布区域,然后以区域为基本单位对影像进行分类,同时利用DEM数据对影像进行地形校正,减小了同种地物内部由于地形起伏造成的光谱离散的现象。利用湖北西部山区的TM影像和DEM数据的试验证明,利用地形特征数据进行分割的分类方法与仅考虑光谱特征的分类方法相比较,分类精度有了明显的提高。 展开更多
关键词 影像分类 地形分割 DEM
下载PDF
多源多特征集成的南水北调工程丹江库区湿地时空格局演变
8
作者 王晓峰 马娟 +3 位作者 周继涛 尧文洁 涂又 王筱雪 《地球科学与环境学报》 CAS 北大核心 2024年第5期569-583,共15页
丹江口水库是中国南水北调工程的关键水源区。随着城镇化发展以及大坝二次建设,库区湿地生态系统变化显著,亟需湿地生态科学监测。以丹江库区为例,依托Google Earth Engine(GEE)平台,首先采用已有土地覆盖数据集生成湿地样本集,其次整合... 丹江口水库是中国南水北调工程的关键水源区。随着城镇化发展以及大坝二次建设,库区湿地生态系统变化显著,亟需湿地生态科学监测。以丹江库区为例,依托Google Earth Engine(GEE)平台,首先采用已有土地覆盖数据集生成湿地样本集,其次整合Landsat影像、DEM等数据构建多源特征集合,并基于Jeffries-Matusita(JM)距离进行特征优选,使用随机森林(RF)算法实现了1985~2023年丹江库区湿地制图。结果表明:①本文提出的样本采集流程可有效提高样本质量,为长时序分类样本采集提供参考;②湿地分类特征优选后特征数由37个减为27个,分类总体精度变化不大,优选后的特征应用于丹江库区湿地分类的平均总体精度(OA)以及平均数量和分配分歧指数(QADI)分别为89.53%和0.0802,说明特征优选有效减少信息冗余,提高影像分类效率;③1985~2023年,丹江库区湿地面积呈波动增加趋势,从1985年的17839.85 ha扩大到2023年的28872.48 ha,面积增长38.12%。总体来说,丹江库区湿地生态系统呈现出逐步恢复和优化的良好态势。 展开更多
关键词 遥感监测 湿地分类 特征优选 随机森林 Landsat影像 时空特征 丹江口水库 南水北调工程
下载PDF
结合珠海一号高光谱影像和XGBoost算法的珠江口滨海湿地分类 被引量:1
9
作者 刘燕君 刘凯 曹晶晶 《测绘通报》 CSCD 北大核心 2023年第12期136-141,共6页
由于湿地类别多样且结构复杂,湿地遥感分类工作极具挑战性。本文以珠江口滨海湿地为研究区,基于珠海一号高光谱影像获取的光谱特征、形状特征、纹理特征和指数特征构建优选特征集,采用极端梯度提升(XGBoost)算法和面向对象技术提取湿地... 由于湿地类别多样且结构复杂,湿地遥感分类工作极具挑战性。本文以珠江口滨海湿地为研究区,基于珠海一号高光谱影像获取的光谱特征、形状特征、纹理特征和指数特征构建优选特征集,采用极端梯度提升(XGBoost)算法和面向对象技术提取湿地类型和空间分布,并对比分析基于支持向量机(SVM)算法和随机森林(RF)算法的湿地分类结果。结果表明:(1)珠海一号高光谱影像能够有效应用于湿地分类,且光谱特征在湿地分类中发挥了重要作用;(2)使用的机器学习算法中XGBoost算法的湿地分类效果最佳,总体精度为87.2%,Kappa系数为0.84;(3)优选的影像特征能够保证更高的湿地类型识别精度,验证了特征筛选有助于提高分类效果。本文发展了一种基于珠海一号高光谱影像和集成学习的大区域湿地类型识别方法,可为湿地资源调查提供有效的技术参考,服务于湿地的保护与开发利用。 展开更多
关键词 湿地分类 红树林 遥感 极端梯度提升(XGBoost) 珠海一号 高光谱影像
下载PDF
Land Use and Land Cover Change Detection in the Saudi Arabian Desert Cities of Makkah and Al-Taif Using Satellite Data 被引量:3
10
作者 Abdullah F. Alqurashi Lalit Kumar 《Advances in Remote Sensing》 2014年第3期106-119,共14页
Land use/land cover (LULC) changes have become a central issue in current global change and sustainability research. Saudi Arabia has undergone significant change in land use and land cover since the government embark... Land use/land cover (LULC) changes have become a central issue in current global change and sustainability research. Saudi Arabia has undergone significant change in land use and land cover since the government embarked on a course of intense national development 30 years ago, as a result of huge national oil revenues. This study evaluates LULC change in Makkah and Al-Taif, Saudi Arabia from 1986 to 2013 using Landsat images. Maximum likelihood and object-oriented classification were used to develop LULC maps. The change detection was executed using post-classification comparison and GIS. The results indicated that urban areas have increased over the period by approximately 174% in Makkah and 113% in Al-Taif. Analysis of vegetation cover over the study area showed a variable distribution from year to year due to changing average precipitation in this environment. Object-based classification provided slightly greater accuracy than maximum likelihood classification. Information provided by satellite remote sensing can play an important role in quantifying and understanding the relationship between population growth and LULC changes, which can assist future planning and potential environmental impacts of expanding urban areas. 展开更多
关键词 LAND Use/Cover Patterns LANDSAT imagery Makkah Al-Taif Urban Growth Image classification Change Detection
下载PDF
Innovative Analysis Ready Data(ARD)product and process requirements,software system design,algorithms and implementation at the midstream as necessary-but-notsuffcient precondition of the downstream in a new notion of Space Economy 4.0-Part 1:Problem background in Artificial General Intelligence(AGI)
11
作者 Andrea Baraldi Luca D.Sapia +3 位作者 Dirk Tiede Martin Sudmanns Hannah L.Augustin Stefan Lang 《Big Earth Data》 EI CSCD 2023年第3期455-693,共239页
Aiming at the convergence between Earth observation(EO)Big Data and Artificial General Intelligence(AGI),this two-part paper identifies an innovative,but realistic EO optical sensory imagederived semantics-enriched An... Aiming at the convergence between Earth observation(EO)Big Data and Artificial General Intelligence(AGI),this two-part paper identifies an innovative,but realistic EO optical sensory imagederived semantics-enriched Analysis Ready Data(ARD)productpair and process gold standard as linchpin for success of a new notion of Space Economy 4.0.To be implemented in operational mode at the space segment and/or midstream segment by both public and private EO big data providers,it is regarded as necessarybut-not-sufficient“horizontal”(enabling)precondition for:(I)Transforming existing EO big raster-based data cubes at the midstream segment,typically affected by the so-called data-rich information-poor syndrome,into a new generation of semanticsenabled EO big raster-based numerical data and vector-based categorical(symbolic,semi-symbolic or subsymbolic)information cube management systems,eligible for semantic content-based image retrieval and semantics-enabled information/knowledge discovery.(II)Boosting the downstream segment in the development of an ever-increasing ensemble of“vertical”(deep and narrow,user-specific and domain-dependent)value–adding information products and services,suitable for a potentially huge worldwide market of institutional and private end-users of space technology.For the sake of readability,this paper consists of two parts.In the present Part 1,first,background notions in the remote sensing metascience domain are critically revised for harmonization across the multidisciplinary domain of cognitive science.In short,keyword“information”is disambiguated into the two complementary notions of quantitative/unequivocal information-as-thing and qualitative/equivocal/inherently ill-posed information-as-data-interpretation.Moreover,buzzword“artificial intelligence”is disambiguated into the two better-constrained notions of Artificial Narrow Intelligence as part-without-inheritance-of AGI.Second,based on a betterdefined and better-understood vocabulary of multidisciplinary terms,existing EO 展开更多
关键词 Artificial Narrow Intelligence big data cognitive science computer vision Earth observation essential climate variables Global Earth Observation System of(component)Systems inductive/deductive/hybrid inference Scene classification Map Space Economy 4.0 radiometric corrections of optical imagery from atmospheric topographic adjacency and bidirectional reflectance distribution function effects semantic content-based image retrieval 2D spatial topology-preserving/retinotopic image mapping world ontology(synonym for conceptual/mental/perceptual model of the world)
原文传递
基于深度学习的高光谱影像分类方法研究
12
作者 张彬 刘亮 +1 位作者 李晓杰 周伟 《红外与毫米波学报》 SCIE EI CSCD 北大核心 2023年第6期825-833,共9页
针对高光谱影像分类方法精度不足的问题,提出一种基于空间-频谱变换(Spectral-Spatial Transformer,SST)网络的高光谱影像分类方法。首先,将高光谱影像预处理为一维特征向量。然后,设计了具有光谱-空间注意力模块和池化残差模块的SST高... 针对高光谱影像分类方法精度不足的问题,提出一种基于空间-频谱变换(Spectral-Spatial Transformer,SST)网络的高光谱影像分类方法。首先,将高光谱影像预处理为一维特征向量。然后,设计了具有光谱-空间注意力模块和池化残差模块的SST高光谱影像分类网络。本文所提出的分类方法在Indian Pines数据集和Pavia University数据集上的总体分类精度分别为98.67%和99.87%,表明此方法具有较高的分类精度,为高光谱影像分类及应用提供了一种新方案。 展开更多
关键词 深度学习 高光谱影像 分类 遥感图像
下载PDF
Innovative Analysis Ready Data(ARD)product and process requirements,software system design,algorithms and implementation at the midstream as necessary-but-notsufficient precondition of the downstream in a new notion of Space Economy 4.0-Part 2:Software developments
13
作者 Andrea Baraldi Luca D.Sapia +3 位作者 Dirk Tiede Martin Sudmanns Hannah Augustin Stefan Lang 《Big Earth Data》 EI CSCD 2023年第3期694-811,共118页
Aiming at the convergence between Earth observation(EO)Big Data and Artificial General Intelligence(AGI),this paper consists of two parts.In the previous Part 1,existing EO optical sensory imagederived Level 2/Analysi... Aiming at the convergence between Earth observation(EO)Big Data and Artificial General Intelligence(AGI),this paper consists of two parts.In the previous Part 1,existing EO optical sensory imagederived Level 2/Analysis Ready Data(ARD)products and processes are critically compared,to overcome their lack of harmonization/standardization/interoperability and suitability in a new notion of Space Economy 4.0.In the present Part 2,original contributions comprise,at the Marr five levels of system understanding:(1)an innovative,but realistic EO optical sensory image-derived semantics-enriched ARD co-product pair requirements specification.First,in the pursuit of third-level semantic/ontological interoperability,a novel ARD symbolic(categorical and semantic)co-product,known as Scene Classification Map(SCM),adopts an augmented Cloud versus Not-Cloud taxonomy,whose Not-Cloud class legend complies with the standard fully-nested Land Cover Classification System’s Dichotomous Phase taxonomy proposed by the United Nations Food and Agriculture Organization.Second,a novel ARD subsymbolic numerical co-product,specifically,a panchromatic or multispectral EO image whose dimensionless digital numbers are radiometrically calibrated into a physical unit of radiometric measure,ranging from top-of-atmosphere reflectance to surface reflectance and surface albedo values,in a five-stage radiometric correction sequence.(2)An original ARD process requirements specification.(3)An innovative ARD processing system design(architecture),where stepwise SCM generation and stepwise SCM-conditional EO optical image radiometric correction are alternated in sequence.(4)An original modular hierarchical hybrid(combined deductive and inductive)computer vision subsystem design,provided with feedback loops,where software solutions at the Marr two shallowest levels of system understanding,specifically,algorithm and implementation,are selected from the scientific literature,to benefit from their technology readiness level as proof of feasibility,required in 展开更多
关键词 Analysis Ready Data Artificial General Intelligence Artificial Narrow Intelligence big data cognitive science computer vision Earth observation essential climate variables Global Earth Observation System of(component)Systems inductive/deductive/hybrid inference Scene classification Map Space Economy 4.0 radiometric corrections of optical imagery from atmospheric topographic adjacency and bidirectional reflectance distribution function effects semantic content-based image retrieval 2D spatial topology-preserving/retinotopic image mapping world ontology(synonym for conceptual/mental/perceptual model of the world)
原文传递
Temporal sequence Object-based CNN(TS-OCNN) for crop classification from fine resolution remote sensing image time-series 被引量:2
14
作者 Huapeng Li Yajun Tian +2 位作者 Ce Zhang Shuqing Zhang Peter MAtkinson 《The Crop Journal》 SCIE CSCD 2022年第5期1507-1516,共10页
Accurate crop distribution mapping is required for crop yield prediction and field management. Due to rapid progress in remote sensing technology, fine spatial resolution(FSR) remotely sensed imagery now offers great ... Accurate crop distribution mapping is required for crop yield prediction and field management. Due to rapid progress in remote sensing technology, fine spatial resolution(FSR) remotely sensed imagery now offers great opportunities for mapping crop types in great detail. However, within-class variance can hamper attempts to discriminate crop classes at fine resolutions. Multi-temporal FSR remotely sensed imagery provides a means of increasing crop classification from FSR imagery, although current methods do not exploit the available information fully. In this research, a novel Temporal Sequence Object-based Convolutional Neural Network(TS-OCNN) was proposed to classify agricultural crop type from FSR image time-series. An object-based CNN(OCNN) model was adopted in the TS-OCNN to classify images at the object level(i.e., segmented objects or crop parcels), thus, maintaining the precise boundary information of crop parcels. The combination of image time-series was first utilized as the input to the OCNN model to produce an ‘original’ or baseline classification. Then the single-date images were fed automatically into the deep learning model scene-by-scene in order of image acquisition date to increase successively the crop classification accuracy. By doing so, the joint information in the FSR multi-temporal observations and the unique individual information from the single-date images were exploited comprehensively for crop classification. The effectiveness of the proposed approach was investigated using multitemporal SAR and optical imagery, respectively, over two heterogeneous agricultural areas. The experimental results demonstrated that the newly proposed TS-OCNN approach consistently increased crop classification accuracy, and achieved the greatest accuracies(82.68% and 87.40%) in comparison with state-of-the-art benchmark methods, including the object-based CNN(OCNN)(81.63% and85.88%), object-based image analysis(OBIA)(78.21% and 84.83%), and standard pixel-wise CNN(79.18%and 82.90%). The proposed approach 展开更多
关键词 Convolutional neural network Multi-temporal imagery Object-based image analysis(OBIA) Crop classification Fine spatial resolution imagery
下载PDF
Hyperspectral image classification based on volumetric texture and dimensionality reduction 被引量:2
15
作者 Hongjun SU Yehua SHENG +2 位作者 Peijun DU Chen CHEN Kui LIU 《Frontiers of Earth Science》 SCIE CAS CSCD 2015年第2期225-236,共12页
A novel approach using volumetric texture and reduced-spectral features is presented for hyperspectral image classification. Using this approach, the volumetric textural fea^res were extracted by volumetric gray-level... A novel approach using volumetric texture and reduced-spectral features is presented for hyperspectral image classification. Using this approach, the volumetric textural fea^res were extracted by volumetric gray-level co-occurrence matrices (VGLCM). The spectral features were extracted by minimum estimated abundance covar- iance (MEAC) and linear prediction (LP)-based band selection, and a semi-supervised k-means (SKM) cluster- ing method with deleting the worst cluster (SKMd) band- clustering algorithms. Moreover, four feature combination schemes were designed for hyperspectral image classifica- tion by using spectral and textural features. It has been proven that the proposed method using VGLCM outper- forms the gray-level co-occurrence matrices (GLCM) method, and the experimental results indicate that the combination of spectral information with volumetric textural features leads to an improved classification performance in hyperspectral imagery. 展开更多
关键词 hyperspectral imagery image classification volumetric textural feature spectral feature FUSION
原文传递
CBERS-02B卫星数据在涪陵区土地利用分类中的应用 被引量:3
16
作者 刘学孔 赵红蕊 +1 位作者 傅罡 汪夕明 《测绘科学》 CSCD 北大核心 2013年第1期80-83,共4页
为推进国产卫星数据的应用,本文以CBERS-02B卫星的CCD数据和HR数据为数据源,以重庆市涪陵区为实验区,将DEM、NDVI数据作为补充,采用分层分类的方法,对实验区土地利用/土地覆盖现状信息进行提取,分析CBERS-02B数据的特点及在应用中存在... 为推进国产卫星数据的应用,本文以CBERS-02B卫星的CCD数据和HR数据为数据源,以重庆市涪陵区为实验区,将DEM、NDVI数据作为补充,采用分层分类的方法,对实验区土地利用/土地覆盖现状信息进行提取,分析CBERS-02B数据的特点及在应用中存在的问题。研究结果表明,CBERS-02B数据可满足复杂地区土地利用宏观监测的需要。 展开更多
关键词 中巴地球资源卫星数据 土地利用 监督分类 混淆矩阵 影像质量
原文传递
Object-oriented crop classification based on UAV remote sensing imagery 被引量:1
17
作者 ZHANG Lan ZHANG Yanhong 《Global Geology》 2022年第1期60-68,共9页
UAV remote sensing images have the advantages of high spatial resolution,fast speed,strong real-time performance,and convenient operation,etc.,and have become a recently developed,vital means of acquiring surface info... UAV remote sensing images have the advantages of high spatial resolution,fast speed,strong real-time performance,and convenient operation,etc.,and have become a recently developed,vital means of acquiring surface information.It is an important research task for precision agriculture to make full use of the spectrum,texture,color and other characteristic information of crops,especially the spatial arrangement and structure information of features,to explore effective methods for the classification of multiple varieties of crops.In order to explore the applicability of the object-oriented method to achieve accurate classification of UAV high-resolution images,the paper used the object-oriented classification method in ENVI to classify the UAV high-resolution remote sensing image obtained from the orderly structured 28 species of crops in the test field,which mainly includes image segmentation and object classification.The results showed that the plots obtained after classification were continuous and complete,basically in line with the actual situation,and the overall accuracy of crop classification was 91.73%,with Kappa coefficient of 0.87.Compared with the crop planting area based on remote sensing interpretation and field survey,the area error of 17 species of crops in this study was controlled within 15%,which provides a basis for object-oriented crop classification of UAV remote sensing images. 展开更多
关键词 object-oriented classification UAV remote sensing imagery crop classification
下载PDF
Mapping spatial variation in acorn production from airborne hyperspectral imagery 被引量:1
18
作者 Kenshi SAKAI 《Forestry Studies in China》 CAS 2010年第2期49-54,共6页
Masting is a well-marked variation in yields of oak forests. In Japan, this phenomenon is also related to wildlife management and oak regeneration practices. This study demonstrates the capability of integrating remot... Masting is a well-marked variation in yields of oak forests. In Japan, this phenomenon is also related to wildlife management and oak regeneration practices. This study demonstrates the capability of integrating remote sensing techniques into map- ping spatial variation of acorn production. The hyperspectral images in 72 wavelengths (407-898 nm) were acquired over the study area ten times over a period of three years (2003-2005) during the early growing season of Quercus serrata using the Airborne Im- aging Spectrometer Application (AISA) Eagle System. With the canopy spectral reflectance values of 22 sample trees extracted from the images, yield estimation models were developed via multiple linear regression (MLR) analyses. Using the object-oriented classi- fication approach in eCognition, canopies representative of individual oak trees (Q. serrata) were identified from the corresponding hyperspectral imagery and combined with the fitted estimation models developed, acorn yield over the entire forest were estimated and visualized into maps. Three estimation models, obtained for June 27 in 2003, July 13 in 2004 and June 21 in 2005, showed good performance in acorn yield estimation both for the training and validation datasets, all with R2 〉 0.4, p 〈 0.05 and RRMSE 〈 1 (the relative root mean square of error). The present study shows the potential of airborne hyperspectral imagery not only in estimating acorn yields during early growing seasons, but also in identifying Q. serrata from other image objects, based on which of the spatial distribution patterns of acorn production over large areas could be mapped. The yield map can provide within-stand abundance and valuable information for the size and spatial synchrony of acorn production. 展开更多
关键词 yield map estimation model classification map ACORN spatial synchrony hyperspectral imagery MASTING
下载PDF
Object-based classification of hyperspectral data using Random Forest algorithm 被引量:2
19
作者 Saeid Amini Saeid Homayouni +1 位作者 Abdolreza Safari Ali A.Darvishsefat 《Geo-Spatial Information Science》 SCIE CSCD 2018年第2期127-138,共12页
This paper presents a new framework for object-based classification of high-resolution hyperspectral data.This multi-step framework is based on multi-resolution segmentation(MRS)and Random Forest classifier(RFC)algori... This paper presents a new framework for object-based classification of high-resolution hyperspectral data.This multi-step framework is based on multi-resolution segmentation(MRS)and Random Forest classifier(RFC)algorithms.The first step is to determine of weights of the input features while using the object-based approach with MRS to processing such images.Given the high number of input features,an automatic method is needed for estimation of this parameter.Moreover,we used the Variable Importance(VI),one of the outputs of the RFC,to determine the importance of each image band.Then,based on this parameter and other required parameters,the image is segmented into some homogenous regions.Finally,the RFC is carried out based on the characteristics of segments for converting them into meaningful objects.The proposed method,as well as,the conventional pixel-based RFC and Support Vector Machine(SVM)method was applied to three different hyperspectral data-sets with various spectral and spatial characteristics.These data were acquired by the HyMap,the Airborne Prism Experiment(APEX),and the Compact Airborne Spectrographic Imager(CASI)hyperspectral sensors.The experimental results show that the proposed method is more consistent for land cover mapping in various areas.The overall classification accuracy(OA),obtained by the proposed method was 95.48,86.57,and 84.29%for the HyMap,the APEX,and the CASI datasets,respectively.Moreover,this method showed better efficiency in comparison to the spectralbased classifications because the OAs of the proposed method was 5.67 and 3.75%higher than the conventional RFC and SVM classifiers,respectively. 展开更多
关键词 Object-based classification Random Forest algorithm multi-resolution segmentation(MRS) hyperspectral imagery
原文传递
An integrated classification method for thematic mapper imagery of plain and highland terrains 被引量:1
20
作者 Shan-long LU Xiao-hua SHEN +6 位作者 Le-jun ZOU Chang-jiang LI Yan-jun MAO Gui-fang ZHANG Wen-yuan WU Ying LIU Zhong ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第6期858-866,共9页
The classification of thematic mapper imagery in areas with strong topographic variations has proven problematic in the past using a single classifier, due to the changing sun illumination geometry. This often results... The classification of thematic mapper imagery in areas with strong topographic variations has proven problematic in the past using a single classifier, due to the changing sun illumination geometry. This often results in the phenomena of identical object with dissimilar spectrum and different objects with similar spectrum. In this paper, an integrated classification method that combines a decision tree with slope data, tasseled cap transformation indices and maximum likelihood classifier is introduced, to find an optimal classification method for thematic mapper imagery of plain and highland terrains. A Landsat 7 ETM+ image acquired over Hangzhou Bay, in eastern China was used to test the method. The results indicate that the performance of the inte- grated classifier is acceptably good in comparison with that of the existing most widely used maximum likelihood classifier. The integrated classifier depends on hypsography (variation in topography) and the characteristics of ground truth objects (plant and soil). It can greatly reduce the influence of the homogeneous spectrum caused by topographic variation. This integrated classifier might potentially be one of the most accurate classifiers and valuable tool for land cover and land use mapping of plain and highland terrains. 展开更多
关键词 Image classification Land cover and land use Thematic mapper imagery Plain and highland terrains Integratedclassification method
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部