We theoretically investigate high-order harmonic generation by employing strong-field approximation (SFA) and present a new approach to the extension of the high-order harmonic cutoff frequency via an exploration of...We theoretically investigate high-order harmonic generation by employing strong-field approximation (SFA) and present a new approach to the extension of the high-order harmonic cutoff frequency via an exploration of the dependence of high-order harmonic generation on the waveform of laser fields. The dependence is investigated via detailed analysis of the classical trajectories of the ionized electron moving in the continuum in the velocity-position plane. The classical trajectory consists of three sections (Acceleration Away, Deceleration Away, and Acceleration Back), and their relationship with the electron recollision energy is investigated. The analysis of classical trajectories indicates that, besides the final (Acceleration Back) section, the electron recollision energy also relies on the previous two sections. We simultaneously optimize the waveform in all three sections to increase the electron recollision energy, and an extension of the cutoff frequency up to Ip + 20.26Up is presented with a theoretically synthesized waveform of the laser field.展开更多
We study the phenomenology of a model that addresses the neutrino mass, dark matter, and generation of the electroweak scale in a single framework. Electroweak symmetry breaking is realized via the Coleman-Weinberg me...We study the phenomenology of a model that addresses the neutrino mass, dark matter, and generation of the electroweak scale in a single framework. Electroweak symmetry breaking is realized via the Coleman-Weinberg mechanism in a classically scale invariant theory, while the neutrino mass is generated radiatively through interactions with dark matter in a typically scotogenic manner. The model introduces a scalar triplet and singlet and a vector-like fermion doublet that carry an odd parity of Z2, and an even parity scalar singlet that helps preserve classical scale invariance. We sample over the parameter space by taking into account various experimental constraints from the dark matter relic density and direct detection, direct scalar searches, neutrino mass, and charged lepton flavor violating decays. We then examine by detailed simulations possible signatures at the LHC to find some benchmark points of the free parameters. We find that the future high-luminosity LHC will have a significant potential in detecting new physics signals in the dilepton channel.展开更多
基金supported by the National Basic Research Program of China (Grant No. 2010CB923102)the Special Prophase Project on the National Basic Research Program of China (Grant No. 2011CB311807)the National Natural Science Foundation of China (Grant No. 11074199)
文摘We theoretically investigate high-order harmonic generation by employing strong-field approximation (SFA) and present a new approach to the extension of the high-order harmonic cutoff frequency via an exploration of the dependence of high-order harmonic generation on the waveform of laser fields. The dependence is investigated via detailed analysis of the classical trajectories of the ionized electron moving in the continuum in the velocity-position plane. The classical trajectory consists of three sections (Acceleration Away, Deceleration Away, and Acceleration Back), and their relationship with the electron recollision energy is investigated. The analysis of classical trajectories indicates that, besides the final (Acceleration Back) section, the electron recollision energy also relies on the previous two sections. We simultaneously optimize the waveform in all three sections to increase the electron recollision energy, and an extension of the cutoff frequency up to Ip + 20.26Up is presented with a theoretically synthesized waveform of the laser field.
基金Supported in part by The National Key Research and Development Program of China(2017YFA0402200)the Grants(NSFC-11575089,NSFC-11025525)the CAS Center for Excellence in Particle Physics(CCEPP)
文摘We study the phenomenology of a model that addresses the neutrino mass, dark matter, and generation of the electroweak scale in a single framework. Electroweak symmetry breaking is realized via the Coleman-Weinberg mechanism in a classically scale invariant theory, while the neutrino mass is generated radiatively through interactions with dark matter in a typically scotogenic manner. The model introduces a scalar triplet and singlet and a vector-like fermion doublet that carry an odd parity of Z2, and an even parity scalar singlet that helps preserve classical scale invariance. We sample over the parameter space by taking into account various experimental constraints from the dark matter relic density and direct detection, direct scalar searches, neutrino mass, and charged lepton flavor violating decays. We then examine by detailed simulations possible signatures at the LHC to find some benchmark points of the free parameters. We find that the future high-luminosity LHC will have a significant potential in detecting new physics signals in the dilepton channel.