Presentation of antigenic peptide to T cells by major histocompatibility complex (MHC) class I molecules is the key to the cellular immune response.Non-self intracellular proteins are processed into short peptides and...Presentation of antigenic peptide to T cells by major histocompatibility complex (MHC) class I molecules is the key to the cellular immune response.Non-self intracellular proteins are processed into short peptides and transported into endoplasmic reticulum (ER) where they are assembled with class I molecules assisted by several chaperone proteins to form trimeric complex.MHC class I complex loaded with optimised peptides travels to the cell surface of antigen presentation cells to be recognised by T cells.The cells presenting non-self peptides are cleared by CD8 positive T cells.In order to ensure that T cells detect an infection or mutation within the target cells the process of peptide loading and class I expression must be carefully regulated.Many of the cellular components involved in antigen processing and class I presentation are known and their various functions are now becoming clearer.Cellular & Molecular Immunology.2004;1(1):22-30.展开更多
Recently there has been great progress in laser-driven plasma-based accelerators by exploiting high-power lasers,where electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to the lase...Recently there has been great progress in laser-driven plasma-based accelerators by exploiting high-power lasers,where electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to the laser wakefield acceleration mechanism. While, to date, worldwide research on laser plasma accelerators has been focused on the creation of compact particle and radiation sources for basic sciences, medical and industrial applications, there is great interest in applications for high-energy physics and astrophysics, exploring unprecedented high-energy frontier phenomena. In this context, we present an overview of experimental achievements in laser plasma acceleration from the perspective of the production of GeV-level electron beams, and deduce the scaling formulas capable of predicting experimental results self-consistently, taking into account the propagation of a relativistic laser pulse through plasma and the accelerating field reduction due to beam loading. Finally, we present design examples for 10-GeV-level laser plasma acceleration, which is expected in near-term experiments by means of petawatt-class lasers.展开更多
文摘Presentation of antigenic peptide to T cells by major histocompatibility complex (MHC) class I molecules is the key to the cellular immune response.Non-self intracellular proteins are processed into short peptides and transported into endoplasmic reticulum (ER) where they are assembled with class I molecules assisted by several chaperone proteins to form trimeric complex.MHC class I complex loaded with optimised peptides travels to the cell surface of antigen presentation cells to be recognised by T cells.The cells presenting non-self peptides are cleared by CD8 positive T cells.In order to ensure that T cells detect an infection or mutation within the target cells the process of peptide loading and class I expression must be carefully regulated.Many of the cellular components involved in antigen processing and class I presentation are known and their various functions are now becoming clearer.Cellular & Molecular Immunology.2004;1(1):22-30.
基金supported by Project Code IBS-R012-D1supported by the National Natural Science Foundation of China (Project No. 51175324)
文摘Recently there has been great progress in laser-driven plasma-based accelerators by exploiting high-power lasers,where electron beams can be accelerated to multi-GeV energy in a centimeter-scale plasma due to the laser wakefield acceleration mechanism. While, to date, worldwide research on laser plasma accelerators has been focused on the creation of compact particle and radiation sources for basic sciences, medical and industrial applications, there is great interest in applications for high-energy physics and astrophysics, exploring unprecedented high-energy frontier phenomena. In this context, we present an overview of experimental achievements in laser plasma acceleration from the perspective of the production of GeV-level electron beams, and deduce the scaling formulas capable of predicting experimental results self-consistently, taking into account the propagation of a relativistic laser pulse through plasma and the accelerating field reduction due to beam loading. Finally, we present design examples for 10-GeV-level laser plasma acceleration, which is expected in near-term experiments by means of petawatt-class lasers.