We present a theoretical study of mode evolution in high-power distributed side-coupled cladding-pumped(DSCCP)fiber amplifiers.A semi-analytical model taking the side-pumping schemes,transverse mode competition,and st...We present a theoretical study of mode evolution in high-power distributed side-coupled cladding-pumped(DSCCP)fiber amplifiers.A semi-analytical model taking the side-pumping schemes,transverse mode competition,and stimulated thermal Rayleigh scattering into consideration has been built,which can model the static and dynamic mode evolution in high-power DSCCP fiber amplifiers.The mode evolution behavior has been investigated with variation of the fiber amplifier parameters,such as the pump power distribution,the length of the DSCCP fiber,the averaged coupling coefficient,the number of the pump cores and the arrangement of the pump cores.Interestingly,it revealed that static mode evolution induced by transverse mode competition is different from the dynamic evolution induced by stimulated thermal Rayleigh scattering.This shows that the high-order mode experiences a slightly higher gain in DSCCP fiber amplifiers,but the mode instability thresholds for DSCCP fiber amplifiers are higher than those for their end-coupled counterparts.By increasing the pump core number and reducing the averaged coupling coefficient,the mode instability threshold can be increased,which indicates that DSCCP fibers can provide additional mitigation strategies of dynamic mode instability.展开更多
We report on an all-fiber oscillator followed by an all-fiber amplifier to produce as short as 382 fs laser pulses with up to 0.9 W average power. The oscillator is an all-normal-dispersion all-fiber dissipative solit...We report on an all-fiber oscillator followed by an all-fiber amplifier to produce as short as 382 fs laser pulses with up to 0.9 W average power. The oscillator is an all-normal-dispersion all-fiber dissipative soliton laser operating at1030 nm, and operating in dissipative soliton mode. The amplifier stage is mainly based on a double-cladding20 μm radius ytterbium-doped fiber pumped by an up to 2.5 W CW laser source. The optical-to-optical conversion amplifier efficiency is around 40%. To our knowledge, this is the first report of an all-fiber mode-locked fiber laser oscillator amplified by an all-fiber amplifier.展开更多
We report on the amplification of high-average-power and high-efficiency picosecond pulses in a self-made verylarge-mode-area Yb-doped photonic crystal fiber(PCF). The PCF with a core diameter of 105 μm and a core ...We report on the amplification of high-average-power and high-efficiency picosecond pulses in a self-made verylarge-mode-area Yb-doped photonic crystal fiber(PCF). The PCF with a core diameter of 105 μm and a core numerical aperture of 0.05 is prepared by the sol-gel method combined with the powder sintering technique. The fiber amplification system produces the highest average power of 255 W at a 10 MHz repetition rate with a 21 ps pulse duration corresponding to a peak power of 1.2 MW. This result exemplifies the high-average-power and high-peak-power potential of this specifically designed fiber.展开更多
We numerically simulate the generation of an optical frequency comb(OFC) in a microring based on the traditional Si_3N_4 strip waveguide and a temperature compensated slot waveguide.The results show that OFCs are su...We numerically simulate the generation of an optical frequency comb(OFC) in a microring based on the traditional Si_3N_4 strip waveguide and a temperature compensated slot waveguide.The results show that OFCs are susceptible to temperature with strip waveguide while they can keep stable when temperature changes 10 Kin either low-Q(10-5) or highQ(10-6) microcavity with the well-designed slot waveguide,which has great superiority in practical applications where the temperature drift of the cavity due to the intense pump or surrounding change is unavoidable.展开更多
基金funded by the National Natural Science Foundation of China(NSFC)(61905226)the Youth Talent Climbing Foundation of the Research Center of Laser Fusion。
文摘We present a theoretical study of mode evolution in high-power distributed side-coupled cladding-pumped(DSCCP)fiber amplifiers.A semi-analytical model taking the side-pumping schemes,transverse mode competition,and stimulated thermal Rayleigh scattering into consideration has been built,which can model the static and dynamic mode evolution in high-power DSCCP fiber amplifiers.The mode evolution behavior has been investigated with variation of the fiber amplifier parameters,such as the pump power distribution,the length of the DSCCP fiber,the averaged coupling coefficient,the number of the pump cores and the arrangement of the pump cores.Interestingly,it revealed that static mode evolution induced by transverse mode competition is different from the dynamic evolution induced by stimulated thermal Rayleigh scattering.This shows that the high-order mode experiences a slightly higher gain in DSCCP fiber amplifiers,but the mode instability thresholds for DSCCP fiber amplifiers are higher than those for their end-coupled counterparts.By increasing the pump core number and reducing the averaged coupling coefficient,the mode instability threshold can be increased,which indicates that DSCCP fibers can provide additional mitigation strategies of dynamic mode instability.
基金Natural Sciences and Engineering Research Council of Canada(NSERC)
文摘We report on an all-fiber oscillator followed by an all-fiber amplifier to produce as short as 382 fs laser pulses with up to 0.9 W average power. The oscillator is an all-normal-dispersion all-fiber dissipative soliton laser operating at1030 nm, and operating in dissipative soliton mode. The amplifier stage is mainly based on a double-cladding20 μm radius ytterbium-doped fiber pumped by an up to 2.5 W CW laser source. The optical-to-optical conversion amplifier efficiency is around 40%. To our knowledge, this is the first report of an all-fiber mode-locked fiber laser oscillator amplified by an all-fiber amplifier.
基金supported by the National“863”Program of China(No.2014AA041901)the National Natural Science Foundation of China(Nos.U1330134 and 61308024)
文摘We report on the amplification of high-average-power and high-efficiency picosecond pulses in a self-made verylarge-mode-area Yb-doped photonic crystal fiber(PCF). The PCF with a core diameter of 105 μm and a core numerical aperture of 0.05 is prepared by the sol-gel method combined with the powder sintering technique. The fiber amplification system produces the highest average power of 255 W at a 10 MHz repetition rate with a 21 ps pulse duration corresponding to a peak power of 1.2 MW. This result exemplifies the high-average-power and high-peak-power potential of this specifically designed fiber.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61435002,61527823,and 61321063)
文摘We numerically simulate the generation of an optical frequency comb(OFC) in a microring based on the traditional Si_3N_4 strip waveguide and a temperature compensated slot waveguide.The results show that OFCs are susceptible to temperature with strip waveguide while they can keep stable when temperature changes 10 Kin either low-Q(10-5) or highQ(10-6) microcavity with the well-designed slot waveguide,which has great superiority in practical applications where the temperature drift of the cavity due to the intense pump or surrounding change is unavoidable.