A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sid...A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sidewalls was monitored and recorded in real-time by a micro-video monitoring equipment.The general failure evolution processes of the hole sidewall at different initial depths(500 m,1000 m and 1500 m)during the adjustment of vertical stress were obtained.The results show that the hole sidewall all formed spalling before resulting in strain rockburst,and ultimately forming a V-shaped notch.The far-field principal stress for the initial failure of the tunnel shows a good positive linear correlation with the depth.As the depth increases,the stress required for the initial failure of the tunnels clearly increased,the spalling became more intense;the size and mass of the rock fragments and depth and width of the V-shaped notches increased,and the range of the failure zone extends along the hole sidewall from the local area to the entire area.Therefore,as the depth increases,the support area around the tunnel should be increased accordingly to prevent spalling.展开更多
Recent earthquakes have shown that tunnels are prone to damage,posing a major threat to safety and having major cascading and socioeconomic impacts.Therefore,reliable models are needed for the seismic fragility assess...Recent earthquakes have shown that tunnels are prone to damage,posing a major threat to safety and having major cascading and socioeconomic impacts.Therefore,reliable models are needed for the seismic fragility assessment of underground structures and the quantitative evaluation of expected losses.Based on previous researches,this paper presented a probabilistic framework based on an artificial neural network(ANN),aiming at the development of fragility curves for circular tunnels in soft soils.Initially,a two-dimensional incremental dynamic analysis of the nonlinear soil-tunnel system was performed to estimate the response of the tunnel under ground shaking.The effects of soil-structure-interaction and the ground motion characteristics on the seismic response and the fragility of tunnels were adequately considered within the proposed framework.An ANN was employed to develop a probabilistic seismic demand model,and its results were compared with the traditional linear regression models.Fragility curves were generated for various damage states,accounting for the associated uncertainties.The results indicate that the proposed ANN-based probabilistic framework can results in reliable fragility models,having similar capabilities as the traditional approaches,and a lower computational cost is required.The proposed fragility models can be adopted for the risk analysis of typical circular tunnel in soft soils subjected to seismic loading,and they are expected to facilitate decision-making and risk management toward more resilient transport infrastructure.展开更多
A numerical code called Rock Failure Process Analysis (RFPA2D) was em- ployed to investigate the closure,damage and failure behavior of the horizontal tunnels.In this code the time-dependent deformation was described ...A numerical code called Rock Failure Process Analysis (RFPA2D) was em- ployed to investigate the closure,damage and failure behavior of the horizontal tunnels.In this code the time-dependent deformation was described in terms of evolution of meso- scopic structure,leading to progressive degradation of elastic modulus and failure strength of material.In terms of material degradation,a series of numerical simulations were per- formed to study the convergence and subsequent failure in circular tunnels.The numerical results provide a complete illumination for the closure,damage and failure behavior with different loading conditions.It is shown that the depth and the ratio of far field stresses play an important role in the creep behavior of tunnels.Creep failure is expected to occur in the direction of the smallest far field stress component,which means that rheological failure of tunnels is influenced not only by the rock characteristic around the tunnels but also by the orientation and distribution of far field stress on a global scale.展开更多
基金Projects(41877272,41472269)supported by the National Natural Science Foundation of ChinaProject(2017zzts167)supported by the Fundamental Research Funds for the Central Universities,China。
文摘A series of true-triaxial compression tests were performed on red sandstone cubic specimens with a circular hole to investigate the influence of depth on induced spalling in tunnels.The failure process of the hole sidewalls was monitored and recorded in real-time by a micro-video monitoring equipment.The general failure evolution processes of the hole sidewall at different initial depths(500 m,1000 m and 1500 m)during the adjustment of vertical stress were obtained.The results show that the hole sidewall all formed spalling before resulting in strain rockburst,and ultimately forming a V-shaped notch.The far-field principal stress for the initial failure of the tunnel shows a good positive linear correlation with the depth.As the depth increases,the stress required for the initial failure of the tunnels clearly increased,the spalling became more intense;the size and mass of the rock fragments and depth and width of the V-shaped notches increased,and the range of the failure zone extends along the hole sidewall from the local area to the entire area.Therefore,as the depth increases,the support area around the tunnel should be increased accordingly to prevent spalling.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52108381,52090082,41772295,51978517)Innovation Program of Shanghai Municipal Education Commission(Grant No.2019-01-07-00-07-456 E00051)key innovation team program of innovation talents promotion plan by MOST of China(No.2016RA4059).
文摘Recent earthquakes have shown that tunnels are prone to damage,posing a major threat to safety and having major cascading and socioeconomic impacts.Therefore,reliable models are needed for the seismic fragility assessment of underground structures and the quantitative evaluation of expected losses.Based on previous researches,this paper presented a probabilistic framework based on an artificial neural network(ANN),aiming at the development of fragility curves for circular tunnels in soft soils.Initially,a two-dimensional incremental dynamic analysis of the nonlinear soil-tunnel system was performed to estimate the response of the tunnel under ground shaking.The effects of soil-structure-interaction and the ground motion characteristics on the seismic response and the fragility of tunnels were adequately considered within the proposed framework.An ANN was employed to develop a probabilistic seismic demand model,and its results were compared with the traditional linear regression models.Fragility curves were generated for various damage states,accounting for the associated uncertainties.The results indicate that the proposed ANN-based probabilistic framework can results in reliable fragility models,having similar capabilities as the traditional approaches,and a lower computational cost is required.The proposed fragility models can be adopted for the risk analysis of typical circular tunnel in soft soils subjected to seismic loading,and they are expected to facilitate decision-making and risk management toward more resilient transport infrastructure.
基金the"973"Program(2007CB209400)the National Natural Science Foundation of China(40638040)the Opening Foundation of State Key Laboratory of Geohazards Prevention and Geoenvironment Protection,Chengdu University of Technology
文摘A numerical code called Rock Failure Process Analysis (RFPA2D) was em- ployed to investigate the closure,damage and failure behavior of the horizontal tunnels.In this code the time-dependent deformation was described in terms of evolution of meso- scopic structure,leading to progressive degradation of elastic modulus and failure strength of material.In terms of material degradation,a series of numerical simulations were per- formed to study the convergence and subsequent failure in circular tunnels.The numerical results provide a complete illumination for the closure,damage and failure behavior with different loading conditions.It is shown that the depth and the ratio of far field stresses play an important role in the creep behavior of tunnels.Creep failure is expected to occur in the direction of the smallest far field stress component,which means that rheological failure of tunnels is influenced not only by the rock characteristic around the tunnels but also by the orientation and distribution of far field stress on a global scale.