Background Airway symptoms in asthma are related to decrease of epinephrine secretion, which may be ascribed to elevated nerve growth factor (NGF) in the organism. The aim of this study was to monitor the neuroendoc...Background Airway symptoms in asthma are related to decrease of epinephrine secretion, which may be ascribed to elevated nerve growth factor (NGF) in the organism. The aim of this study was to monitor the neuroendocrine alteration in the adrenal medulla of asthmatic rats. Methods Sixteen rats were randomly divided into two groups (n=-8), control group and asthma group, and the asthmatic rats were sensitized and challenged with ovalbumin (OVA). The levels of NGF, epinephrine and norepinephrine in serum were detected by enzyme linked immunosorbent assay (ELISA), the NGF expression in adrenal medulla was detected by immunohistochemistry, and the changes in the ultrastructure of the adrenal medulla was observed by electron microscopy. Results The NGF expression was increased in asthmatic rats compared with control rats. Compared with control rats, the results indicated that the epinephrine level was decreased in asthmatic rats, but no significant difference was found in norepinephrine levels. We found more ganglion cells in the adrenal medulla of asthmatic rats than in control rats, with NGF immunostaining mainly located in these ganglion cells. Electron microscopic images showed the density of chromaffin granula decreased and there was shrunken nucleolemma in the adrenal medullary cells of asthmatic rats. Conclusion The innervation of the adrenal medulla is changed in asthmatic rats, and it may contribute to the epinephrine decrease in asthma.展开更多
The cortical actin network is a mesh of filaments distributed beneath the plasmalemma that dynamically reacts in response to stimuli.This dynamic network of cortical filaments,together with motor myosin partners,adjus...The cortical actin network is a mesh of filaments distributed beneath the plasmalemma that dynamically reacts in response to stimuli.This dynamic network of cortical filaments,together with motor myosin partners,adjusts the plasmalemma tension,organizes membrane protein microdomains,remodels the cell surface and drives vesicle motion in order to fine-tune exocytosis,endocytosis and recycling of secretory vesicles.In this review,we discuss how these mechanisms work in secretory cells.展开更多
基金This work was supported by grants from the National Natural Science Foundation of China (No. 30570802, No. 30800502 and No. 30801505).
文摘Background Airway symptoms in asthma are related to decrease of epinephrine secretion, which may be ascribed to elevated nerve growth factor (NGF) in the organism. The aim of this study was to monitor the neuroendocrine alteration in the adrenal medulla of asthmatic rats. Methods Sixteen rats were randomly divided into two groups (n=-8), control group and asthma group, and the asthmatic rats were sensitized and challenged with ovalbumin (OVA). The levels of NGF, epinephrine and norepinephrine in serum were detected by enzyme linked immunosorbent assay (ELISA), the NGF expression in adrenal medulla was detected by immunohistochemistry, and the changes in the ultrastructure of the adrenal medulla was observed by electron microscopy. Results The NGF expression was increased in asthmatic rats compared with control rats. Compared with control rats, the results indicated that the epinephrine level was decreased in asthmatic rats, but no significant difference was found in norepinephrine levels. We found more ganglion cells in the adrenal medulla of asthmatic rats than in control rats, with NGF immunostaining mainly located in these ganglion cells. Electron microscopic images showed the density of chromaffin granula decreased and there was shrunken nucleolemma in the adrenal medullary cells of asthmatic rats. Conclusion The innervation of the adrenal medulla is changed in asthmatic rats, and it may contribute to the epinephrine decrease in asthma.
基金This work was supported by the Grants PICT 2764-2016,PICT 02849-2018 and PICT 02041-2019 from the Agencia Nacional de Promoción de la Investigación,el Desarrollo Tecnológico y la Innovación(Argentina)ICN09_022 from ICM-ANID(Chile).
文摘The cortical actin network is a mesh of filaments distributed beneath the plasmalemma that dynamically reacts in response to stimuli.This dynamic network of cortical filaments,together with motor myosin partners,adjusts the plasmalemma tension,organizes membrane protein microdomains,remodels the cell surface and drives vesicle motion in order to fine-tune exocytosis,endocytosis and recycling of secretory vesicles.In this review,we discuss how these mechanisms work in secretory cells.