Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-scale (EMMS) model was used to simulate a semi-industry scale circulating fluidized bed (CFB). Three-dim...Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-scale (EMMS) model was used to simulate a semi-industry scale circulating fluidized bed (CFB). Three-dimensional (3D), time-dependent simulation of a full-loop CFB revealed that the axial profiles of cross-sectionally averaged solid volume fraction, and the radial profiles of solid axial velocity and solid volume fraction were in reasonable agreement with experimental data. Based on this agreement, database derived from experiments not yet accomplished was replenished with such simulations, and fluid regime diagrams and pressure balance around the CFB loop were derived accordingly. This work presents an integrated viewpoint on CFB and unfolds a fresh paradigm for CFB modeling, which can be expected to help resolve certain issues long in dispute but bard for experiments.展开更多
The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to...The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to bleed hole diameter and the ratio of bleed hole depth to diameter is investigated by numerical simulations under choking and non-choking conditions.The results show that the subsonic leading edge of the circular hole and the subsonic part of the boundary layer are the main factors causing lateral flow of the bleed hole.The effect of diameter on bleed mass flow rate is due to the viscous effect which reduces the effective diameter.The larger the ratio of displacement thickness to bleed hole diameter,the more obvious the viscous effect is.The depth affects bleed flow rate by changing the opening and closing states of the separation zone.When a certain depth is reached,the development of the boundary layer reduces the effective captured stream tube and thus reduces the bleed mass flow rate.The main objective of the study is to obtain the physical mechanism of the bleed hole size parameters affecting the bleed mass flow rate,and to provide theoretical guidance for the selection of the size of bleed holes in the design of a porous arrays bleed system in hypersonic inlets.展开更多
In this paper, the behavior of the flow choking, including the critical and developing states, was experimentally investiga- ted by means of five slit-type outlets, characterized by the outlet width, the contraction a...In this paper, the behavior of the flow choking, including the critical and developing states, was experimentally investiga- ted by means of five slit-type outlets, characterized by the outlet width, the contraction angle and the opening of the working gate. The results showed that the approach flow Froude number of the critical choking decreases if the outlet width increases, or the con- traction angle decreases, or the opening increases. There is the hysteresis when the flow choking develops, i.e., the Froude numbers of the appearance and disappearance of the flow choking at the increasing discharge regime are all larger than those at the decreasing discharge regime. For various widths of the outlets, the differences between the critical Froude numbers at small opening are much larger than thoset at large opening. The change range from appearance to disappearance of the flow choking at small opening is smaller than that at large opening.展开更多
The flow choking may occur for weir flow slit-type flip buckets trader common operation conditions. An estimation method is developed through introducing a comprehensive coefficient to determine the approach flow Frou...The flow choking may occur for weir flow slit-type flip buckets trader common operation conditions. An estimation method is developed through introducing a comprehensive coefficient to determine the approach flow Froude number for the flow choking to occur in those flip buckets. The error of the present method relative to the experimental data is less than 5%. The results show that, the Froude number for the flow choking to occur is related to the contraction ratio and the contraction angle of the flip buckets. When the flow choking occurs, the upper jet trajectory decreases and the lower one is almost not affected, and the dynamic pressures on the bottom and the sidewalls increase due to the flow profile rising on the flip buckets.展开更多
The present study focuses on numerical simulation of the gas-solid suspension flow in a supersonic nozzle. The Euler- Lagrange approach using a Discrete Phase Model (DPM) has been used to solve the compressible Navier...The present study focuses on numerical simulation of the gas-solid suspension flow in a supersonic nozzle. The Euler- Lagrange approach using a Discrete Phase Model (DPM) has been used to solve the compressible Navier-Stokes equa- tions. A fully implicit finite volume scheme has been employed to discretize the governing equations. Based upon the present CFD results, the particle loading effect on gas-solid suspension flow was investigated. The results show that the presence of particles has a big influence on the gas phase behavior. The structure of shock train, the separation point, and the vortex of the backflow are all related to particle loading. As the particle loading increases the flow characteris- tics behave differently such as 1) the strength of shock train decreases, 2) the separation point moves toward the nozzle exit, 3) the number and strength of vortex increase, 4) the strength of first shock also increases while the other pseudo shocks decreases. The change of gas flow behavior in turn affects the particle distribution. The particles are concen- trated at the shear layers separated from the upper wall surface.展开更多
With respect to the crest spillway with large unit discharge and low Froude number, the hydraulics of the slit-type energy dissipater at the outlet should be noticed due to the complicated flow regimes. In the present...With respect to the crest spillway with large unit discharge and low Froude number, the hydraulics of the slit-type energy dissipater at the outlet should be noticed due to the complicated flow regimes. In the present paper, some issues about hydraulic characteristics were experimentally investigated by means of five slit-type outlets and four tetrahedrons, including the flow choking, impact to river banks and jet trajectory. The main findings are as follows. The critical Froude number for the flow choking decreases with increasing outlet width of the slit-type energy dissipater. If the flow Froude number is expressed by the parameters just before this energy dissipater, the tetrahedron placed inside the side wall of the outlet could efficiently avoid the flow impact to the river bank of same side, and compared with the jet trajectory of the slit-type energy dissipater, the outlet with tetrahedron has different trajectory trend, i.e., the distance of the jet trajectory decreases with the increase of the water head due to special form of the outlet tetrahedron.展开更多
Particle-gas two-phase flows show significantly different behaviors compared to single gas flow through a convergent-divergent nozzle. Non-equilibrium effects, thermal and velocity lag results to the inefficiency of n...Particle-gas two-phase flows show significantly different behaviors compared to single gas flow through a convergent-divergent nozzle. Non-equilibrium effects, thermal and velocity lag results to the inefficiency of nozzle performance. In the present studies, theoretical analysis and numerical simulations were carried out to investigate particle-gas flows in a C-D nozzle. Homogeneous equilibrium model that no lag in velocity and temperature occurs between particles and gas phase was used to derive mass flow rate and sound speed of multiphase flows. Two-phase flows are regarded as isentropic flows that isentropic relations can be used for homogeneous equilibrium model. Discrete phase model (DPM) where interaction with continuous phase and discrete random walk model were considered was used to calculate particle- gas flows. Particle mass loadings were varied to investigate their effects on choking phenomena of particle-gas flows. Mass flow rate and sound speed of mixture flows were theoretically calculated by homogeneous equilibrium model and compared with numerical results. Shock wave structure and particle number density were also obtained to be different at different particle mass loading and operating pressure conditions.展开更多
This paper investigates hydraulic jumps in sloping pipes by means of wall-resolved large eddy simulation(LES).The purpose is to achieve an improved understanding of jump behaviours driven by pipe discharge and slope.T...This paper investigates hydraulic jumps in sloping pipes by means of wall-resolved large eddy simulation(LES).The purpose is to achieve an improved understanding of jump behaviours driven by pipe discharge and slope.The LES model predicts the hydraulic jump as a 3-D two-phase flow,with air as the gas phase and water as the liquid phase.The predictions yield instantaneous velocity and pressure fields as well as fluid volume fraction.The instantaneous flow variables allow ensemble averages,which quantify the internal structures and integral properties of the hydraulic jump.The predicted instantaneous velocity shows spectra in consistency with the well-known Kolmogorov−5/3 law.The ensemble averages of air and water velocities,free-surface profile,roller length and aeration length,compare well with available experimental data.The jump behaviours are complex.Some aspects such as free-surface fluctuation and jump-toe oscillation resemble the classical hydraulic jump on horizontal floors.Others like the 3-D distributions of core jet,vorticity and aeration are much more complicated.Depending on the pipe discharge and slope,the resulting jump can be a complete or an incomplete jump.The incomplete hydraulic jump causes choked flow downstream.This has severe consequences on drainage conditions in sewer pipes laid on sloping terrain.This paper proposes using the Okubo-Weiss parameter as a new way to subtly delineate the region of hydraulic jump.It is much more efficient and less ambiguous,compared with traditional visual inspections.展开更多
基金the National Natural Science Foundation of China under Grant Nos. 20606033,20490201, 20221603 the MOST under Grant Nos.2006BAA03B02-05 and 2007AA050302
文摘Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-scale (EMMS) model was used to simulate a semi-industry scale circulating fluidized bed (CFB). Three-dimensional (3D), time-dependent simulation of a full-loop CFB revealed that the axial profiles of cross-sectionally averaged solid volume fraction, and the radial profiles of solid axial velocity and solid volume fraction were in reasonable agreement with experimental data. Based on this agreement, database derived from experiments not yet accomplished was replenished with such simulations, and fluid regime diagrams and pressure balance around the CFB loop were derived accordingly. This work presents an integrated viewpoint on CFB and unfolds a fresh paradigm for CFB modeling, which can be expected to help resolve certain issues long in dispute but bard for experiments.
基金supported by the National Natural Science Foundation of China(No.11472304)the Graduate Innovation Grant of Hunan Province(No.CX2017B006),China。
文摘The bleed hole diameter,depth,and boundary layer thickness are key design parameters of a supersonic bleed system.The evolution trend of single-hole bleed flow coefficient with the ratio of boundary layer thickness to bleed hole diameter and the ratio of bleed hole depth to diameter is investigated by numerical simulations under choking and non-choking conditions.The results show that the subsonic leading edge of the circular hole and the subsonic part of the boundary layer are the main factors causing lateral flow of the bleed hole.The effect of diameter on bleed mass flow rate is due to the viscous effect which reduces the effective diameter.The larger the ratio of displacement thickness to bleed hole diameter,the more obvious the viscous effect is.The depth affects bleed flow rate by changing the opening and closing states of the separation zone.When a certain depth is reached,the development of the boundary layer reduces the effective captured stream tube and thus reduces the bleed mass flow rate.The main objective of the study is to obtain the physical mechanism of the bleed hole size parameters affecting the bleed mass flow rate,and to provide theoretical guidance for the selection of the size of bleed holes in the design of a porous arrays bleed system in hypersonic inlets.
基金supported by the National Natural Science Foundation of China(Grant No.51179056,51279013)
文摘In this paper, the behavior of the flow choking, including the critical and developing states, was experimentally investiga- ted by means of five slit-type outlets, characterized by the outlet width, the contraction angle and the opening of the working gate. The results showed that the approach flow Froude number of the critical choking decreases if the outlet width increases, or the con- traction angle decreases, or the opening increases. There is the hysteresis when the flow choking develops, i.e., the Froude numbers of the appearance and disappearance of the flow choking at the increasing discharge regime are all larger than those at the decreasing discharge regime. For various widths of the outlets, the differences between the critical Froude numbers at small opening are much larger than thoset at large opening. The change range from appearance to disappearance of the flow choking at small opening is smaller than that at large opening.
基金Project supported by the National Natural Science Foundation of China(Grant No.51179056)the PAPD(Grant No.3014-SYS1401)the Fundamental Research Funds for the Central Universities of China(Grant No.2014B03114)
文摘The flow choking may occur for weir flow slit-type flip buckets trader common operation conditions. An estimation method is developed through introducing a comprehensive coefficient to determine the approach flow Froude number for the flow choking to occur in those flip buckets. The error of the present method relative to the experimental data is less than 5%. The results show that, the Froude number for the flow choking to occur is related to the contraction ratio and the contraction angle of the flip buckets. When the flow choking occurs, the upper jet trajectory decreases and the lower one is almost not affected, and the dynamic pressures on the bottom and the sidewalls increase due to the flow profile rising on the flip buckets.
文摘The present study focuses on numerical simulation of the gas-solid suspension flow in a supersonic nozzle. The Euler- Lagrange approach using a Discrete Phase Model (DPM) has been used to solve the compressible Navier-Stokes equa- tions. A fully implicit finite volume scheme has been employed to discretize the governing equations. Based upon the present CFD results, the particle loading effect on gas-solid suspension flow was investigated. The results show that the presence of particles has a big influence on the gas phase behavior. The structure of shock train, the separation point, and the vortex of the backflow are all related to particle loading. As the particle loading increases the flow characteris- tics behave differently such as 1) the strength of shock train decreases, 2) the separation point moves toward the nozzle exit, 3) the number and strength of vortex increase, 4) the strength of first shock also increases while the other pseudo shocks decreases. The change of gas flow behavior in turn affects the particle distribution. The particles are concen- trated at the shear layers separated from the upper wall surface.
基金Project supported by the National Natural Science Foundation of China(Grant No.51179056)
文摘With respect to the crest spillway with large unit discharge and low Froude number, the hydraulics of the slit-type energy dissipater at the outlet should be noticed due to the complicated flow regimes. In the present paper, some issues about hydraulic characteristics were experimentally investigated by means of five slit-type outlets and four tetrahedrons, including the flow choking, impact to river banks and jet trajectory. The main findings are as follows. The critical Froude number for the flow choking decreases with increasing outlet width of the slit-type energy dissipater. If the flow Froude number is expressed by the parameters just before this energy dissipater, the tetrahedron placed inside the side wall of the outlet could efficiently avoid the flow impact to the river bank of same side, and compared with the jet trajectory of the slit-type energy dissipater, the outlet with tetrahedron has different trajectory trend, i.e., the distance of the jet trajectory decreases with the increase of the water head due to special form of the outlet tetrahedron.
文摘Particle-gas two-phase flows show significantly different behaviors compared to single gas flow through a convergent-divergent nozzle. Non-equilibrium effects, thermal and velocity lag results to the inefficiency of nozzle performance. In the present studies, theoretical analysis and numerical simulations were carried out to investigate particle-gas flows in a C-D nozzle. Homogeneous equilibrium model that no lag in velocity and temperature occurs between particles and gas phase was used to derive mass flow rate and sound speed of multiphase flows. Two-phase flows are regarded as isentropic flows that isentropic relations can be used for homogeneous equilibrium model. Discrete phase model (DPM) where interaction with continuous phase and discrete random walk model were considered was used to calculate particle- gas flows. Particle mass loadings were varied to investigate their effects on choking phenomena of particle-gas flows. Mass flow rate and sound speed of mixture flows were theoretically calculated by homogeneous equilibrium model and compared with numerical results. Shock wave structure and particle number density were also obtained to be different at different particle mass loading and operating pressure conditions.
基金received financial support from the Natural Sciences and Engineering Research Council of Canada through Discovery Grants held by S.S.Li.
文摘This paper investigates hydraulic jumps in sloping pipes by means of wall-resolved large eddy simulation(LES).The purpose is to achieve an improved understanding of jump behaviours driven by pipe discharge and slope.The LES model predicts the hydraulic jump as a 3-D two-phase flow,with air as the gas phase and water as the liquid phase.The predictions yield instantaneous velocity and pressure fields as well as fluid volume fraction.The instantaneous flow variables allow ensemble averages,which quantify the internal structures and integral properties of the hydraulic jump.The predicted instantaneous velocity shows spectra in consistency with the well-known Kolmogorov−5/3 law.The ensemble averages of air and water velocities,free-surface profile,roller length and aeration length,compare well with available experimental data.The jump behaviours are complex.Some aspects such as free-surface fluctuation and jump-toe oscillation resemble the classical hydraulic jump on horizontal floors.Others like the 3-D distributions of core jet,vorticity and aeration are much more complicated.Depending on the pipe discharge and slope,the resulting jump can be a complete or an incomplete jump.The incomplete hydraulic jump causes choked flow downstream.This has severe consequences on drainage conditions in sewer pipes laid on sloping terrain.This paper proposes using the Okubo-Weiss parameter as a new way to subtly delineate the region of hydraulic jump.It is much more efficient and less ambiguous,compared with traditional visual inspections.