Several disinfection processes of ultraviolet (UV), chlorine or UV followed by chlorine were investigated in municipal wastewater according to the inactivation of Escherichia coli, Shigella dysenteriae and toxicity ...Several disinfection processes of ultraviolet (UV), chlorine or UV followed by chlorine were investigated in municipal wastewater according to the inactivation of Escherichia coli, Shigella dysenteriae and toxicity formation. The UV inactivation of the tested pathogenic bacteria was not affected by the quality of water. It was found that the inactivated bacteria were obviously reactivated after one day in dark. Fluorescent light irradiation increased the bacteria repair. The increase of UV dosage could cause more damage to bacteria to inhibit bacteria self-repair. No photoreactivation was detected when the UV dose was up to 80 mJ/cm2 for E. coli DH5ct, and 23 mJ/cm2 for S. dysenteriae. Nevertheless, sequential use of 8 mJ/cm2 of UV and low concentration of chlorine (1.5 mg/L) could effectively inhibit the photoreactivation and inactivate E. coli below the detection limits within seven days. Compared to chlorination alone, the sequential disinfection decreased the genotoxicity of treated wastewater, especially for the sample with high NH3-N concentration.展开更多
During the chlorine disinfection of reclaimed-water, the proportion of bromo-disinfection by-products (bromo-DBPs) in total DBPs is affected by chlorine dosage, reaction time, pH, ammonia nitrogen (NH<SUB>3</...During the chlorine disinfection of reclaimed-water, the proportion of bromo-disinfection by-products (bromo-DBPs) in total DBPs is affected by chlorine dosage, reaction time, pH, ammonia nitrogen (NH<SUB>3</SUB>-N) and preozonation. Results show that bromo-trihalomethanes (bromo-THMs) form more easily than bromo-haloacetic acids (bromo-HAAs) and bromine incorporation in DBPs decreases with the increase of chlorine dosage. Within 5 h, bromine incorporation in THMs (n(Br)) increases but bromine incorporation in HAAs (n′(Br)) decreases with the extension of reaction time; however, n(Br) decreases and n′(Br) keeps relatively constant at a longer reaction time. Furthermore, bromine incorporation in DBPs is low under acidic and alkaline conditions. The increase of NH<SUB>3</SUB>-N concentration inhibits the formation of chloro-DBPs, resulting in the increase of n(Br) and n′(Br) to some extent. Preozonation enhances the formation of HOBr and the increase of bromine incorporation in DBPs; however, ozone of a high concentration oxidizes HOBr to its salt form, leading to the decrease of bromine incorporation in DBPs.展开更多
基金supported by the National Major Project of Science & Technology Ministry of China (No. 2008ZX07314-003,2009ZX07424-003)the National HiTech Research and Development Program (863) of China (No. 2008AA062501,2008AA06A414)
文摘Several disinfection processes of ultraviolet (UV), chlorine or UV followed by chlorine were investigated in municipal wastewater according to the inactivation of Escherichia coli, Shigella dysenteriae and toxicity formation. The UV inactivation of the tested pathogenic bacteria was not affected by the quality of water. It was found that the inactivated bacteria were obviously reactivated after one day in dark. Fluorescent light irradiation increased the bacteria repair. The increase of UV dosage could cause more damage to bacteria to inhibit bacteria self-repair. No photoreactivation was detected when the UV dose was up to 80 mJ/cm2 for E. coli DH5ct, and 23 mJ/cm2 for S. dysenteriae. Nevertheless, sequential use of 8 mJ/cm2 of UV and low concentration of chlorine (1.5 mg/L) could effectively inhibit the photoreactivation and inactivate E. coli below the detection limits within seven days. Compared to chlorination alone, the sequential disinfection decreased the genotoxicity of treated wastewater, especially for the sample with high NH3-N concentration.
基金the National Natural Science Foundation of China (Grant No. 50538090)Funds for Creative Research Groups of China (Grant No. 50621804)
文摘During the chlorine disinfection of reclaimed-water, the proportion of bromo-disinfection by-products (bromo-DBPs) in total DBPs is affected by chlorine dosage, reaction time, pH, ammonia nitrogen (NH<SUB>3</SUB>-N) and preozonation. Results show that bromo-trihalomethanes (bromo-THMs) form more easily than bromo-haloacetic acids (bromo-HAAs) and bromine incorporation in DBPs decreases with the increase of chlorine dosage. Within 5 h, bromine incorporation in THMs (n(Br)) increases but bromine incorporation in HAAs (n′(Br)) decreases with the extension of reaction time; however, n(Br) decreases and n′(Br) keeps relatively constant at a longer reaction time. Furthermore, bromine incorporation in DBPs is low under acidic and alkaline conditions. The increase of NH<SUB>3</SUB>-N concentration inhibits the formation of chloro-DBPs, resulting in the increase of n(Br) and n′(Br) to some extent. Preozonation enhances the formation of HOBr and the increase of bromine incorporation in DBPs; however, ozone of a high concentration oxidizes HOBr to its salt form, leading to the decrease of bromine incorporation in DBPs.