Magnetoelectric(ME)multiferroic materials have unique advantages in low-power and high-density information storage,because they can simultaneously display ferroelectricity and ferromagnetism.However,research on how to...Magnetoelectric(ME)multiferroic materials have unique advantages in low-power and high-density information storage,because they can simultaneously display ferroelectricity and ferromagnetism.However,research on how to construct air-stable highperformance ME single-molecule magnets(SMMs)is nonexistent.Herein,by introducing homochirality while reducing molecular symmetry,two doubledecker Dy(III)enantiomers adopting the polar space group P2_(1) and exhibiting excellent thermal stability were obtained.They displayed zero field SMM behavior with an anisotropy barrier(Ueff)of ca.100 cm^(−1).This work establishes a rational chemical design strategy for crystallizing SMMs in polar space groups and elucidates the direction for future research,that is,engineering small-size high-performance SMMs.展开更多
Magnetic skyrmion tubes and bobbers are two types of different nanoscale spin configurations that can coexist in nanostructures of chiral magnets.They are then proposed to be utilized as binary bits to build racetrack...Magnetic skyrmion tubes and bobbers are two types of different nanoscale spin configurations that can coexist in nanostructures of chiral magnets.They are then proposed to be utilized as binary bits to build racetrack memory devices.The ability to manipulate the two magnetic objects controllably by current in nanostructures is the prerequisite to realize the device.Here,we demonstrate by numerical simulations that a magnetic bobber and a skyrmion tube can be transformed to each other using spinpolarized current in nanostripes with stepped shape.We also show such stepped nanostructures can be readily applied as the write head for the skyrmion-bobber-based racetrack memory.展开更多
基金This work was supported by the National Natural Science Foundation of China(no.21871247)the Key Research Program of Frontier Sciences,CAS(no.ZDBSLY-SLH023)+2 种基金the Key Research Program of the Chinese Academy of Sciences(no.ZDRW-CN-2021-3-3)the Academy of Finland(grant no.332294)Computational resources were provided by CSC-IT Center for Science in Finland and the Finnish Grid and Cloud Infrastructure(persistent identifier urn:nbn:fi:research-infras-2016072533).
文摘Magnetoelectric(ME)multiferroic materials have unique advantages in low-power and high-density information storage,because they can simultaneously display ferroelectricity and ferromagnetism.However,research on how to construct air-stable highperformance ME single-molecule magnets(SMMs)is nonexistent.Herein,by introducing homochirality while reducing molecular symmetry,two doubledecker Dy(III)enantiomers adopting the polar space group P2_(1) and exhibiting excellent thermal stability were obtained.They displayed zero field SMM behavior with an anisotropy barrier(Ueff)of ca.100 cm^(−1).This work establishes a rational chemical design strategy for crystallizing SMMs in polar space groups and elucidates the direction for future research,that is,engineering small-size high-performance SMMs.
基金supported by the National Natural Science Foundation of China(Grant Nos.11804343,and 11974021)the Key Research Program of the Chinese Academy of Sciences(Grant No.KJZD-SW-M01)。
文摘Magnetic skyrmion tubes and bobbers are two types of different nanoscale spin configurations that can coexist in nanostructures of chiral magnets.They are then proposed to be utilized as binary bits to build racetrack memory devices.The ability to manipulate the two magnetic objects controllably by current in nanostructures is the prerequisite to realize the device.Here,we demonstrate by numerical simulations that a magnetic bobber and a skyrmion tube can be transformed to each other using spinpolarized current in nanostripes with stepped shape.We also show such stepped nanostructures can be readily applied as the write head for the skyrmion-bobber-based racetrack memory.