期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
中文电子病历命名实体和实体关系语料库构建 被引量:107
1
作者 杨锦锋 关毅 +4 位作者 何彬 曲春燕 于秋滨 刘雅欣 赵永杰 《软件学报》 EI CSCD 北大核心 2016年第11期2725-2746,共22页
电子病历是由医务人员撰写的面向患者个体描述医疗活动的记录,蕴含了大量的医疗知识和患者的健康信息.电子病历命名实体识别和实体关系抽取等信息抽取研究对于临床决策支持、循证医学实践和个性化医疗服务等具有重要意义,而电子病历命... 电子病历是由医务人员撰写的面向患者个体描述医疗活动的记录,蕴含了大量的医疗知识和患者的健康信息.电子病历命名实体识别和实体关系抽取等信息抽取研究对于临床决策支持、循证医学实践和个性化医疗服务等具有重要意义,而电子病历命名实体和实体关系标注语料库的构建是首当其冲的.在调研了国内外电子病历命名实体和实体关系标注语料库构建的基础上,结合中文电子病历的特点,提出适合中文电子病历的命名实体和实体关系的标注体系,在医生的指导和参与下,制定了命名实体和实体关系的详细标注规范,构建了标注体系完整、规模较大且一致性较高的标注语料库.语料库包含病历文本992份,命名实体标注一致性达到0.922,实体关系一致性达到0.895.为中文电子病历信息抽取后续研究打下了坚实的基础. 展开更多
关键词 中文电子病历 命名实体 实体关系 标注规范 标注语料构建
下载PDF
结合多头自注意力机制与BiLSTM-CRF的中文临床实体识别 被引量:27
2
作者 罗熹 夏先运 +1 位作者 安莹 陈先来 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第4期45-55,共11页
命名实体是电子病历中相关医学知识的主要载体,因此,临床命名实体识别(Clinical Named Entity Recognition,CNER)也就成为了临床文本分析处理的基础性任务之一.由于文本结构和语言等方面的特殊性,面向中文电子病历(Electronic Medical R... 命名实体是电子病历中相关医学知识的主要载体,因此,临床命名实体识别(Clinical Named Entity Recognition,CNER)也就成为了临床文本分析处理的基础性任务之一.由于文本结构和语言等方面的特殊性,面向中文电子病历(Electronic Medical Records,EMRs)的临床命名实体识别依然存在着巨大的挑战.本文提出了一种基于多头自注意力神经网络的中文临床命名实体识别方法.该方法使用了一种新颖的融合领域词典的字符级特征表示方法,并在BiLSTM-CRF模型的基础上,结合多头自注意力机制来准确地捕获字符间潜在的依赖权重、语境和语义关联等多方面的特征,从而有效地提升了中文临床命名实体的识别能力.实验结果表明本文方法超过现有的其他方法获得了较优的识别性能. 展开更多
关键词 中文电子病历 命名实体识别 长短期记忆 多头自注意力
下载PDF
基于CNN-CRF的中文电子病历命名实体识别研究 被引量:26
3
作者 曹依依 周应华 +1 位作者 申发海 李智星 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2019年第6期869-875,共7页
智慧医疗技术的发展让我们不满足仅使用传统方法做医学研究.针对中文电子病历实体识别问题,设计了一种基于卷积神经网络结合条件随机场(convolutional neural network-conditional random field,CNN-CRF)的实体识别算法框架.为得到高质... 智慧医疗技术的发展让我们不满足仅使用传统方法做医学研究.针对中文电子病历实体识别问题,设计了一种基于卷积神经网络结合条件随机场(convolutional neural network-conditional random field,CNN-CRF)的实体识别算法框架.为得到高质量的词向量,将标注实体加入词典进行分词,并将已标注和未标注文本作为语料,用word2vec工具对已分词文本进行无监督学习;为避免扩张卷积层数增加导致过拟合,采用迭代扩张卷积处理输入向量,并使用dropout随机丢弃一些连接;运用条件随机场对网络的分类结果进行修正.把该方法在中文电子病历上进行对比试验,从病历中提取出身体部位,疾病,症状,检查及治疗5类实体.实验结果表明,该方法能有效地辨别病历中的实体,其识别的准确率、召回率和f1值分别为90.01%,90.62%,90.31%,准确率和速率比传统方法都有一定提高. 展开更多
关键词 实体识别 中文电子病历 卷积神经网路 条件随机场
下载PDF
面向知识发现的中文电子病历标注方法研究 被引量:13
4
作者 胡佳慧 方安 +2 位作者 赵琬清 杨晨柳 任慧玲 《数据分析与知识发现》 CSSCI CSCD 北大核心 2019年第7期123-132,共10页
【目的】研究基于中文电子病历的标注方法,提升临床文本分析与处理能力,促进临床知识发现。【方法】提出中文电子病历标注思路,并构建可视化交互平台,基于电子病历文本的字与词特征,综合利用自然语言处理和机器学习方法开展临床命名实... 【目的】研究基于中文电子病历的标注方法,提升临床文本分析与处理能力,促进临床知识发现。【方法】提出中文电子病历标注思路,并构建可视化交互平台,基于电子病历文本的字与词特征,综合利用自然语言处理和机器学习方法开展临床命名实体识别实证研究。【结果】获得700份标注病历语料,基于Pipeline的标注方法总体F值达0.8772,较基于原始标注病历数据集的命名实体识别效果提升32.9%。【局限】由于电子病历包含与隐私相关的敏感信息,本研究基于开放评测数据开展实验研究,语料库大小受限。【结论】本研究所提出的中文电子病历标注方法和所构建的标注平台适用于临床文本处理,能够促进医学临床文本资源的知识关联化。 展开更多
关键词 中文电子病历 文本标注 自然语言处理 机器学习 知识发现
原文传递
基于BERT的中文电子病历命名实体识别 被引量:10
5
作者 封红旗 孙杨 +1 位作者 杨森 李文杰 《计算机工程与设计》 北大核心 2023年第4期1220-1227,共8页
针对中文电子病历命名实体识别过程中实体特征利用率低,语义表示不充分等问题,提出一种基于BERT语言模型的命名实体识别方法。运用Char-CNN学习字符的多种特征,将特征加入BERT预训练生成的词向量中,获得融合领域信息和汉字特征的词向量... 针对中文电子病历命名实体识别过程中实体特征利用率低,语义表示不充分等问题,提出一种基于BERT语言模型的命名实体识别方法。运用Char-CNN学习字符的多种特征,将特征加入BERT预训练生成的词向量中,获得融合领域信息和汉字特征的词向量表示,将词向量输入迭代扩张卷积神经网络中进行特征抽取,引入注意力机制加强实体特征的关注度,通过CRF解码标注命名实体。实验结果表明,该方法在CCKS17中取得91.64%的F1值,识别性能优于现有方法。 展开更多
关键词 中文电子病历 命名实体识别 深度学习 语言模型 卷积神经网络 注意力机制 词向量
下载PDF
结合注意力机制的BERT-BiGRU-CRF中文电子病历命名实体识别 被引量:10
6
作者 陈娜 孙艳秋 燕燕 《小型微型计算机系统》 CSCD 北大核心 2023年第8期1680-1685,共6页
为了改善中文电子病历命名实体识别模型的性能,本文提出了基于BERT、双向门控循环单元(Bidirectional Gate Recurrent Unit,BiGRU)与条件随机场CRF相结合的中文电子病历命名实体识别模型,并在此基础上引入了注意力机制.利用BERT(Bidirec... 为了改善中文电子病历命名实体识别模型的性能,本文提出了基于BERT、双向门控循环单元(Bidirectional Gate Recurrent Unit,BiGRU)与条件随机场CRF相结合的中文电子病历命名实体识别模型,并在此基础上引入了注意力机制.利用BERT(Bidirectional Encoder Representation from Transformers)预训练模型得到结合语境信息的动态字向量,通过双向门控循环单元(Bidirectional Gate Recurrent Unit,BiGRU)提取全局语义特征,利用注意力机制获得增强语义特征,最后通过CRF(Conditional Random Field)解码输出概率最大的全局最优标签序列.利用含有解剖部位、手术、疾病和诊断、药物、实验室检验、影像检查6类实体的CCKS19中文电子病历数据集训练模型.对比实验表明了本文提出的命名实体识别模型的有效性,本文模型在CCKS19数据集上获得了84.11%的F1值。 展开更多
关键词 中文电子病历 命名实体识别 BERT BiGRU 注意力机制
下载PDF
融合语义及边界信息的中文电子病历命名实体识别 被引量:7
7
作者 崔少国 陈俊桦 李晓虹 《电子科技大学学报》 EI CAS CSCD 北大核心 2022年第4期565-571,共7页
中文电子病历数据专业性强,语法结构复杂,用于自然语言处理(NLP)的命名实体识别(NER)难度大。为了从电子病历数据中精确识别出医疗实体,提出了一种融合语义及边界信息的命名实体识别算法。首先,利用卷积神经网络(CNN)结构提取汉字图形信... 中文电子病历数据专业性强,语法结构复杂,用于自然语言处理(NLP)的命名实体识别(NER)难度大。为了从电子病历数据中精确识别出医疗实体,提出了一种融合语义及边界信息的命名实体识别算法。首先,利用卷积神经网络(CNN)结构提取汉字图形信息,并与五笔特征拼接来丰富汉字的语义信息;然后,利用FLAT模型中的Lattice将医学词典作为字符潜在词组匹配文本信息;最后,将融入语义信息的Lattice模型用于中文电子病历命名实体识别。实验结果表明,该方法在Yidu-S4K数据集上的识别性能超过现有多种算法,且在Resume数据集上F1值可达到96.06%。 展开更多
关键词 中文电子病历 FLAT 医学字典 命名实体识别 自然语言处理
下载PDF
中文医疗命名实体识别方法研究综述 被引量:5
8
作者 王红 王彩雨 《山东师范大学学报(自然科学版)》 2021年第2期109-117,共9页
电子医疗系统中的医疗健康数据为医学研究和医疗实践奠定了强大的数据基础,如何充分利用这些数据进行探索和分析,更好地支持临床决策和大众健康仍然面临着诸多挑战.因此,对中文医疗命名实体识别方法和研究现状进行归纳分析,对于医学研... 电子医疗系统中的医疗健康数据为医学研究和医疗实践奠定了强大的数据基础,如何充分利用这些数据进行探索和分析,更好地支持临床决策和大众健康仍然面临着诸多挑战.因此,对中文医疗命名实体识别方法和研究现状进行归纳分析,对于医学研究具有一定的指导意义.本文阐述了医疗命名实体识别任务的定义,分析并提出了中文医疗命名实体识别的研究热点:语义缺失、资源不足问题、命名实体嵌套.详细介绍了中文医疗命名实体识别的研究现状,从最初的基于规则和字典方法到基于传统的统计学习方法再到现在的基于深度学习方法,不断地将新技术应用到命名实体识别研究中以提高性能.系统总结了常用的若干数据集和实验测评指标,以此评价了中文医疗命名实体识别模型的性能.通过综合论述和分析给出了数据增强等未来的研究建议. 展开更多
关键词 医学命名实体识别 中文电子病历 动态网络 多语义词典 多模态树
下载PDF
基于平行交互注意力网络的中文电子病历实体及关系联合抽取 被引量:1
9
作者 李丽双 王泽昊 +1 位作者 秦雪洋 袁光辉 《中文信息学报》 CSCD 北大核心 2024年第6期108-118,共11页
基于电子病历构建医学知识图谱对医疗技术的发展具有重要意义,实体和关系抽取是构建知识图谱的关键技术。该文针对目前实体关系联合抽取中存在的特征交互不充分的问题,提出了一种平行交互注意力网络(PIAN)以充分挖掘实体与关系的相关性... 基于电子病历构建医学知识图谱对医疗技术的发展具有重要意义,实体和关系抽取是构建知识图谱的关键技术。该文针对目前实体关系联合抽取中存在的特征交互不充分的问题,提出了一种平行交互注意力网络(PIAN)以充分挖掘实体与关系的相关性,在多个标准的医学和通用数据集上取得最优结果;当前中文医学实体及关系标注数据集较少,该文基于中文电子病历构建了实体和关系抽取数据集(CEMRIE),与医学专家共同制定了语料标注规范,并基于该文所提出的模型实验得出基准结果。 展开更多
关键词 实体关系联合抽取 双向特征交互模块 自注意力机制 中文电子病历 数据集标注与构建
下载PDF
中文电子病历信息提取方法研究综述 被引量:1
10
作者 吉旭瑞 魏德健 +2 位作者 张俊忠 张帅 曹慧 《计算机工程与科学》 CSCD 北大核心 2024年第2期325-337,共13页
电子病历里承载的大量医疗信息能够帮助医生更好地了解患者的情况,辅助医生进行临床诊断。作为中文电子病历信息提取的2大核心任务,命名实体识别和实体关系抽取的目标是识别出电子病历文本中的医学实体并提取出各个实体间的医学关系。首... 电子病历里承载的大量医疗信息能够帮助医生更好地了解患者的情况,辅助医生进行临床诊断。作为中文电子病历信息提取的2大核心任务,命名实体识别和实体关系抽取的目标是识别出电子病历文本中的医学实体并提取出各个实体间的医学关系。首先,系统阐述了中文电子病历的研究现状,指出命名实体识别和实体关系抽取2大任务在中文电子病历信息提取中所发挥的重要作用。随后,介绍了面向中文电子病历信息提取的命名实体识别和关系抽取算法的最新研究成果,并分析了每个阶段各个模型的优缺点。最后,讨论了中文电子病历现阶段所存在的问题并对未来的研究趋势进行展望。 展开更多
关键词 中文电子病历 命名实体识别 实体关系抽取 自然语言处理 深度学习
下载PDF
基于预训练模型的中文电子病历实体识别 被引量:4
11
作者 李晓林 胡泽荣 《计算机工程与设计》 北大核心 2023年第2期535-540,共6页
为提升传统中文电子病历实体识别预训练模型的语义特征提取能力并增强中文隐含特征表示,提出基于改进预训练语言模型的医疗命名实体识别方法。提出动态词长的逆向最大匹配算法对病历文本进行标注歧义处理,在此基础上构建用户自定义医疗... 为提升传统中文电子病历实体识别预训练模型的语义特征提取能力并增强中文隐含特征表示,提出基于改进预训练语言模型的医疗命名实体识别方法。提出动态词长的逆向最大匹配算法对病历文本进行标注歧义处理,在此基础上构建用户自定义医疗实体字典辅助PKU分词,提高预训练模型掩码效果。输入向量层加入字向量,引入注意力机制学习字向量的全局语义特征。改进预训练模型mask策略和机制并去掉下一句预测,提升词向量语义表征能力。实验结果表明,该方法有效提高了医疗实体的识别效果,F1值达到90.57%。 展开更多
关键词 中文电子病历 命名实体识别 预训练模型 标注歧义 注意力机制 逆向最大匹配算法 医疗实体字典
下载PDF
基于BERT和领域词典融合的中文电子病历命名实体识别 被引量:1
12
作者 叶恩光 张晓如 +3 位作者 张再跃 丁腊春 朱向南 王译 《计算机与数字工程》 2024年第3期746-750,767,共6页
医疗数据挖掘的起始环节为CNER(中文电子病历命名实体识别),将相关实体(解剖部位、药品、影像检查等)识别出非结构化文本是其目标所在。基于CNER准确性提升需要,论文设计了BERT-BiLSTM-CRF模型融合领域词典技术,该技术能将上下文语义关... 医疗数据挖掘的起始环节为CNER(中文电子病历命名实体识别),将相关实体(解剖部位、药品、影像检查等)识别出非结构化文本是其目标所在。基于CNER准确性提升需要,论文设计了BERT-BiLSTM-CRF模型融合领域词典技术,该技术能将上下文语义关系全面结合,一词多义问题同样可以迎刃而解,获取电子病历句子的长距离依赖。CNER采用BERT-BiLSTM-CRF模型融合领域词典技术时的F1值已经被实验结果所证实,对知识图谱的构建、临床决策支持系统和病历质控系统等的研究有着重要意义。 展开更多
关键词 中文电子病历 命名实体识别 BERT-BiLSTM-CRF 领域词典
下载PDF
基于CNN-BGRU-CRF的中文电子病历实体抽取方法 被引量:5
13
作者 冯云霞 衣鹏 +1 位作者 韩正亮 宋波 《计算机与现代化》 2020年第11期60-64,99,共6页
针对传统方法在中文电子病历实体抽取任务中存在对词典和分词工具过于依赖,无法充分利用上下文特征等问题,本文提出一种基于字嵌入卷积(CNN)、双向门控循环单元(BGRU)和条件随机场(CRF)结合的中文电子病历实体抽取模型。首先利用字嵌入... 针对传统方法在中文电子病历实体抽取任务中存在对词典和分词工具过于依赖,无法充分利用上下文特征等问题,本文提出一种基于字嵌入卷积(CNN)、双向门控循环单元(BGRU)和条件随机场(CRF)结合的中文电子病历实体抽取模型。首先利用字嵌入方法提取出潜在词特征,然后在使用字词特征联合方式的同时使用注意力机制突出特定的信息,最后通过合理性约束得到最终结果。该模型充分使用了字词特征避免了实体抽取受错误分词的影响,并且减少了人工构造特征的过程,提高了实体抽取效率。实验结果表明,该模型在诊断名称、症状名称、治疗方式类别的实体抽取中,F值表现优于传统的Bi-LSTM-CRF模型。 展开更多
关键词 中文电子病历 实体抽取 卷积网络 双向门控循环单元 注意力机制
下载PDF
中文电子病历命名实体识别算法BLF-MarkBERT
14
作者 潘旭 余艳梅 +1 位作者 盛西方 陶青川 《现代计算机》 2024年第9期35-38,65,共5页
随着深度学习技术的发展,中文命名实体识别在各个领域取得了显著进展,特别是在中文电子病历领域,它成为了医学信息管理领域的重要任务。中文电子病历命名实体识别从电子病历中自动识别和分类命名实体,提高了医学信息管理效率和临床决策... 随着深度学习技术的发展,中文命名实体识别在各个领域取得了显著进展,特别是在中文电子病历领域,它成为了医学信息管理领域的重要任务。中文电子病历命名实体识别从电子病历中自动识别和分类命名实体,提高了医学信息管理效率和临床决策支持,促进了医学智能信息化发展。为进一步提升效果,对MarkBERT方法进行研究,在其基础上改进并实现了一种融合双向长短时记忆网络和解码方式的深度学习模型BLF-MarkBERT。在CCKS2019数据集上的实验结果表明,BLF-MarkBERT在准确率P、召回率R和F1分数这三个评估指标上均优于对比算法,表明了该模型的优越性。 展开更多
关键词 中文命名实体识别 MarkBERT BiLSTM 中文电子病历
下载PDF
基于知识图谱和预训练语言模型的儿童疫苗接种风险预测
15
作者 吴英飞 刘蓉 +2 位作者 李明燕 季钗 崔朝健 《计算机系统应用》 2024年第10期37-46,共10页
基层医疗机构的医生缺少患病儿童疫苗接种风险的判断能力,通过学习高水平医院医生的经验来研发儿童疫苗接种风险预测模型,从而帮助基层医疗机构医生快速筛查高风险患儿,是一种可行的方案.本文提出了一种智能化的基于知识图谱的疫苗接种... 基层医疗机构的医生缺少患病儿童疫苗接种风险的判断能力,通过学习高水平医院医生的经验来研发儿童疫苗接种风险预测模型,从而帮助基层医疗机构医生快速筛查高风险患儿,是一种可行的方案.本文提出了一种智能化的基于知识图谱的疫苗接种建议推荐方法.首先,提出了一种基于预训练语言模型的医学命名实体识别方法ELECTRA-BiGRU-CRF,用于门诊电子病历命名实体抽取.其次,设计疫苗接种本体,定义关系及属性,基于Neo4j构建了中文儿童疫苗接种知识图谱.最后,基于构建的中文疫苗接种知识图谱,提出了一种基于预训练语言模型进行显著性类别指导的疫苗接种建议分类推荐方法.实验结果表明,本文研究方法可以为医生提供辅助诊断,对于患病儿童能否接种疫苗提供决策支持. 展开更多
关键词 中文电子病历 预训练语言模型 知识图谱 命名实体识别 疫苗接种建议
下载PDF
基于中文电子病历知识图谱的实体对齐研究
16
作者 李丽双 董姜媛 《中文信息学报》 CSCD 北大核心 2024年第8期103-111,共9页
医疗知识图谱中知识重叠和互补的现象普遍存在,利用实体对齐进行医疗知识图谱融合成为迫切需要。然而据作者调研,目前医疗领域中的实体对齐尚没有一个完整的处理方案。因此该文提出了一个规范的基于中文电子病历的医疗知识图谱实体对齐... 医疗知识图谱中知识重叠和互补的现象普遍存在,利用实体对齐进行医疗知识图谱融合成为迫切需要。然而据作者调研,目前医疗领域中的实体对齐尚没有一个完整的处理方案。因此该文提出了一个规范的基于中文电子病历的医疗知识图谱实体对齐流程,为医疗领域的实体对齐提供了一种可行的方案。同时针对基于中文电子病历医疗知识图谱之间结构异构性的特点,该文设计了一个双视角并行图神经网络(DuPNet)模型用于解决医疗领域实体对齐,并取得较好的效果。 展开更多
关键词 医疗知识图谱 中文电子病历 实体对齐 结构异构体 并行图神经网络
下载PDF
面向中文医疗事件的联合抽取方法 被引量:4
17
作者 余杰 纪斌 +3 位作者 刘磊 李莎莎 马俊 刘慧君 《计算机科学》 CSCD 北大核心 2021年第11期287-293,共7页
临床病历电子化的推广普及使得利用自动化的方法从病历中快速抽取高价值的信息成为可能。作为一种重要的医学信息,肿瘤医疗事件由描述恶性肿瘤的一系列属性构成。近年来,肿瘤医疗事件抽取已成为学术界的一个研究热点,众多学术会议将其... 临床病历电子化的推广普及使得利用自动化的方法从病历中快速抽取高价值的信息成为可能。作为一种重要的医学信息,肿瘤医疗事件由描述恶性肿瘤的一系列属性构成。近年来,肿瘤医疗事件抽取已成为学术界的一个研究热点,众多学术会议将其发布为评测任务,并提供了一系列高质量的标注数据。针对肿瘤医疗事件属性离散的特点,文中提出了一种中文医疗事件的联合抽取方法,实现了肿瘤原发部位和原发肿瘤大小两种属性的联合抽取和肿瘤转移部位的抽取。此外,针对肿瘤医疗事件标注文本的数量和类型少的问题,提出了一种基于关键信息全域随机替换的伪数据生成算法,提升了联合抽取方法对不同类型肿瘤医疗事件抽取的迁移学习能力。所提方法获得了CCKS2020中文电子病历临床医疗事件抽取评测任务的第三名,在CCKS2019和CCKS2020数据集上的大量实验验证了所提方法的有效性。 展开更多
关键词 中文电子病历 医疗事件抽取 迁移学习 联合抽取 肿瘤事件
下载PDF
MRC-PBM:一种中文电子病历嵌套命名实体识别方法
18
作者 周佳伦 李琳宇 +1 位作者 马洪彬 姜艳静 《国外电子测量技术》 2024年第1期159-165,共7页
中文电子病历实体包含大量的医学领域词汇并具有明显的嵌套特征。嵌套实体识别时往往存在目标实体定位不完整、不准确的问题。针对这一问题,提出了一种基于机器阅读理解的中文电子病历嵌套命名实体识别模型MRC-PBM(machine reading comp... 中文电子病历实体包含大量的医学领域词汇并具有明显的嵌套特征。嵌套实体识别时往往存在目标实体定位不完整、不准确的问题。针对这一问题,提出了一种基于机器阅读理解的中文电子病历嵌套命名实体识别模型MRC-PBM(machine reading comprehension-position information biaffine and MLP)。该模型将命名实体识别(named entity recognition,NER)转化为机器阅读理解任务,将中文电子病历文本和预定义的查询语句串联作为输入,使用基于医学的预训练模型MC_BERT获取词向量,然后通过双向长短期记忆网络模型(BiLSTM)和多粒度扩张卷积模型分别获取双向的特征信息以及单词之间的信息,得到相应的特征向量,最后使用Hybrid-PBM预测器进行实体预测。在嵌套和平面NER数据集上进行实验。实验表明,该模型在糖尿病语料和公开医学数据集上优于其他主流神经网络模型,F1值比基线模型提高了1.21%~5.80%。 展开更多
关键词 中文电子病历 命名实体识别 机器阅读理解 嵌套实体
下载PDF
基于中文电子病历的跨科室组块分析 被引量:3
19
作者 戴雪 蒋志鹏 关毅 《计算机应用研究》 CSCD 北大核心 2017年第7期2084-2087,共4页
针对医疗领域的研究,发现了不同科室间电子病历存在着差异,但是新语料的标注成本又非常高。为了解决这一问题,利用迁移学习的方法在中文电子病历中进行跨科室组块分析的研究。在构建的中文电子病历中,对比了SSVM与CRF模型在词性标注和... 针对医疗领域的研究,发现了不同科室间电子病历存在着差异,但是新语料的标注成本又非常高。为了解决这一问题,利用迁移学习的方法在中文电子病历中进行跨科室组块分析的研究。在构建的中文电子病历中,对比了SSVM与CRF模型在词性标注和组块分析上的实验结果,发现SSVM模型的效果更好并选择该模型作为基本标注模型;此外,使用了改进的结构对应学习算法(SCL)进行组块分析,使得该算法能适用于SSVM模型进行领域适应。实验结果表明该算法有效地改善了序列标注任务中跨科室的领域适应性问题。 展开更多
关键词 中文电子病历 词性标注 组块分析 领域适应 结构化支持向量机
下载PDF
基于对抗训练的中文电子病历命名实体识别 被引量:3
20
作者 孔令巍 朱艳辉 +4 位作者 张旭 欧阳康 黄雅淋 金书川 沈加锐 《湖南工业大学学报》 2022年第3期36-43,共8页
为提高传统命名实体识别模型在中文电子病历上的准确性,提出一种在基线模型BERTBiLSTM-CRF中加入对抗训练的方法,该方法在词嵌入层添加扰动因子从而生成对抗样本,并利用对抗样本进行迭代训练,从而优化模型参数。CCKS2021评测数据集实验... 为提高传统命名实体识别模型在中文电子病历上的准确性,提出一种在基线模型BERTBiLSTM-CRF中加入对抗训练的方法,该方法在词嵌入层添加扰动因子从而生成对抗样本,并利用对抗样本进行迭代训练,从而优化模型参数。CCKS2021评测数据集实验结果表明,加入FGM和PGD两个对抗训练模型后,其精准率、召回率以及F_(1)值相比于基线模型均有所提升。并且通过对比实验,验证了加入对抗训练能够提高模型的预测能力和鲁棒性。 展开更多
关键词 中文电子病历 命名实体识别 对抗训练 BERT BiLSTM CRF FGM PGD
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部